

全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高三数学总复习三角函数专题复习三第三课时例1求函数的最小值,并求其单调区间。解: 因为,所以,所以,所以,当即时,的最小值为,因为是单调递增的,所以上单调递增。例2已知函数。(1) 求的最小正周期、的最大值及此时x的集合;(2) 证明:函数的图像关于直线对称。解: (1)所以的最小正周期,因为,所以,当,即时,最大值为;(2)证明:欲证明函数的图像关于直线对称,只要证明对任意,有成立,因为,所以成立,从而函数的图像关于直线对称。例3已知函数,若,且,求的取值范围。解:,因为,所以,所以,所以,而,即,所以,解得:,所以的取值范围是。例4已知函数。(1) 求的最小正周期;(2) 求的最小值及取得最小值时相应的x值;(3) 若当时,求的值。解: (1) 由上可知,得最小正周期为;(2) 当,即时,得最小值为2;(3) 因为,所以,令,所以,所以。备用题1已知函数。(1) 将写成含的形式,并求其对称中心;(2) 如果三角形ABC的三边a、b、c满足b2=ac,且边b所对角为x,试求x的范围及此时函数的值域。解:(1) ,令得,即对称中心为(2)由b2=ac,所以,此时,所以,所以,即值域为。备用题2已知函数,求(1) 当x为何值时,函数有最大值?最大值为多少?(2) 求将函数的图像按向量平移后得到的函数解析式,并判断平移后函数的奇偶性。解:(1),当,即时,;(2)按平移,即将函数的图像向左平移单位,再向下平移2个单位得到所求函数的图像,所以得到解析式为,由,所以平移后函数为偶函数。作业1已知函数的最小正周期为,且当时,函数有最小值,(1)求 的解析式;(2)求的单调递增区间。解:(1) ,由题意,当时,不是最小值。当时,是最小值。所以;(2)当,即时,函数单调递增。作业2已知定义在R上的函数的最小正周期为,。(1)写出函数 的解析式;(2)写出函数 的单调递增区间;(3)说明的图像如何由函数的图像变换而来。解:(1) ,由题意,代入,有,所以;(2) 当,函数单调增;(3) 将函数的图像向左平移单位,再将得到的函数图像上所有的点的纵坐标不变,横坐标缩短到原来的倍,可得到函数的图像。作业3已知,求的最值。解:因为,即,原函数化为,当时,当时,。作业4就三角函数的性质,除定义域外,请再写出三条。解:a. 奇偶性:非奇非偶函数;b. 单调性:在上为单调增函数, 在上为单调减函数;c. 周期性:最小正周期;d. 值域与最值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制造业企业健康体检工作总结范文
- (2025年标准)股权割让协议书
- (2025年标准)股票借款协议书
- 2025年无人机航模制作与调试专业笔试预测试题及答案解析
- 建筑工地任何可能的紧急情况的处理措施
- 2025年证券从业资格考试通关宝典基础知识与交易规则
- 三年级下语文综合能力提升复习计划
- (2025年标准)购物团协议书
- (2025年标准)购柑子苗协议书
- 广东省深圳南头中学2026届高三化学第一学期期中达标测试试题含解析
- 近视推拿培训课件
- 2025年国企运维岗笔试题目及答案
- 2025年职业卫生培训试题及答案
- 2025年江苏省建筑施工企业主要负责人安全员A证考核题库含答案
- 2025年洛阳理工学院招聘硕士研究生学历专任教师考试笔试试题(含答案)
- 中华人民共和国治安管理处罚法2025修订版测试题及答案
- 广西柳州市2024-2025学年七年级下学期期末历史试题 (含答案)
- 无人机应用技术专业认识
- 备考2025年湖北省宜昌市辅警协警笔试笔试预测试题(含答案)
- 新学期教学工作会议上校长讲话:把功夫下在课堂里把心思放在学生上把质量落到细节中
- 初中语文教师培训
评论
0/150
提交评论