




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,一元二次方程的解法,-配方法,孟庄中学:赵景丽,开心练一练:,(1),(2),2、下列方程能用直接开平方法来解吗?,创设情境温故探新,1、用直接开平方法解下列方程:,静心想一想:,(1),(2),把两题转化成(x+b)2=a(a0)的形式,再利用开平方,X2+6X+9=25,(1),(2),(3),=(+)2,=()2,=()2,左边:所填常数等于一次项系数一半的平方.,填上适当的数或式,使下列各等式成立.,大胆试一试:,共同点:,()2,=()2,(4),自主探究,观察(1)(2)看所填的常数与一次项系数之间有什么关系?,问题:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽应各是多少?,(1)解:设场地宽为X米,则长为(x+6)米,根据题意得:,整理得:X2+6X16=0,合作交流探究新知,X(X+6)=16,可以验证,2和-8是方程的两根,但是场地的宽不能是负值,因此场地的宽是2米,长是8(2+6)米。,把一元二次方程的左边配成一个完全平方式,然后用开平方法求解,这种解一元二次方程的方法叫做配方法.,配方时,等式两边同时加上的是一次项系数的平方。,一半,例1:用配方法解方程,解:,配方得:,开平方得:,移项得:,原方程的解为:,例2:你能用配方法解方程吗?,解:,配方得:,开平方得:,范例研讨运用新知,移项得:,原方程的解为:,化二次项系数为1得:,二次项系数不为1又怎么办?,想一想用配方法解一元二次方程一般有哪些步骤?,例2:你能用配方法解方程吗?,小结:,(2)移项:把常数项移到方程的右边;,(3)配方:方程两边都加上一次项系数一半的平方;,(4)开平方:根据平方根意义,方程两边开平方;,(5)定解:写出方程的解,用配方法解一元二次方程ax2+bx+c=0(a0)的步骤:,(1)系数化为1:方程两边同除以二次项系数;,反馈练习巩固新知,1、用配方法解下列方程:,(1)x2+8x-15=0,(3)x2-5x-6=0,(2)3x2+6x-4=0,(4)x(x+4)=8x+12,2、思考:先用配方法解下列方程:(1)x22x10(2)x22x40然后回答下列问题:你在求解过程中遇到什么问题?你是怎样处理所遇到的问题的?,3、用配方法说明:不论k取何实数,多项式k24k5的值必定大于零.,课堂小结,(2)移项,(3)配方,(4)开平方,(5)写出方程的解,2、用配方法解一元二次方程ax2+bx+c=0(a0)的步骤:,1、配方法:,通过配方,将方程的左边化成一个含未,知数的完全平方式,右边是一个非负常数,运用直接开平方求出方程的解的方法。,(1)化二次项系数为1,3、化归,作业:课本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届龙岩市重点中学数学七下期末复习检测试题含解析
- 2025届广东省佛山市南海区桂城街道八下数学期末质量跟踪监视试题含解析
- 风险管理与公司品牌战略的协同效应试题及答案
- 2024年汉中西乡县医疗定向招聘笔试真题
- 2024年贵州中医药大学人才引进笔试真题
- 2024年崇左宁明县爱店镇卫生院招聘笔试真题
- 安徽许镇2025届数学七下期末质量跟踪监视模拟试题含解析
- 数据可视化的重要性与实践试题及答案
- 材料力学性能测试安全性重点基础知识点
- 湖北恩施沐抚大峡谷2025年数学七下期末达标检测试题含解析
- HG∕T 3714-2014 耐油输送带 国标
- 2024年湖南省高中学业水平合格性考试英语试卷真题(含答案详解)
- 《内科胸腔镜术》课件
- 2024年《体育基础理论》考试题库(含答案)
- CJJ 33-2005城镇燃气输配工程施工与验收规范
- 《市场营销:网络时代的超越竞争》第4版 课件 第9章 通过构建渠道网络传递顾客价值
- 农民工工资代付款方协议模板
- 药物合成反应-9合成设计原理
- 跨学科阅读纲要智慧树知到期末考试答案章节答案2024年山东师范大学
- 2025届湖南省数学高一下期末学业水平测试试题含解析
- 哮病-《中医内科学》教案
评论
0/150
提交评论