




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,初中数学掌上课堂,2,18.2.2.2菱形的判定,3,1.掌握菱形的判定方法。,2.菱形在实际问题中的应用。,4,两组对边分别平行,矩形,有一个角是直角,菱形,有一组邻边相等,四边形,复习:,根据菱形的定义,可得菱形的第一个判定的方法,四边形ABCD是平行四边形且AB=AD,四边形ABCD是菱形,数学语言:,有一组邻边相等的平行四边形叫做菱形,探究一,用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?,猜想:,对角线互相垂直的平行四边形是菱形.,命题:对角线互相垂直的平行四边形是菱形.,证明:,四边形ABCD是平行四边形,OA=OC,又BDAC;,BA=BC,判定方法2:,对角线互相垂直的平行四边形是菱形,在ABCD中,ACBD,ABCD是菱形,数学语言,先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?说出你的理由,猜想:有四条边相等的四边形是菱形。,O,探究二,命题:有四条边相等的四边形是菱形。,已知:在四边形ABCD中,AB=BC=CD=DA.求证:四边形ABCD是菱形,证明:,AB=CD,AD=BC,四边形ABCD是平行四边形,又AB=AD,四边形ABCD是菱形,四边相等的四边形是菱形.,在四边形ABCD中AB=BC=CD=DA,四边形ABCD是菱形,判定方法3:,数学语言,菱形常用的判定方法:,有一组邻边相等的平行四边形叫做菱形,对角线互相垂直的平行四边形是菱形,有四条边相等的四边形是菱形。,归纳:,菱形的判定:,AB=BC=CD=DA,四边形ABCD是菱形,在ABCD中,ACBD,四边形ABCD是菱形,在ABCD中,AB=AD,四边形ABCD是菱形,A,B,C,D,O,一组邻边相等的平行四边形是菱形,1、下列图形是菱形以吗,为什么?,有一组邻边相等的平行四边形叫做菱形,对角线互相垂直的平行四边形是菱形,有四条边相等的四边形是菱形。,尝试练习:,2、判断下列说法是否正确?为什么?(1)对角线互相垂直的四边形是菱形;()(2)对角线互相垂直平分的四边形是菱形;()(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;()(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形(),3、ABCD的对角线AC与BD相交于点O,(1)若AB=AD,则ABCD是形;(2)若AC=BD,则ABCD是形;(3)若ABC是直角,则ABCD是形;(4)若BAO=DAO,则ABCD是形。,矩,菱,矩,菱,(1).下列命题中正确的是()A.一组邻边相等的四边形是菱形B.三条边相等的四边形是菱形C.四条边相等的四边形是菱形D.四个角相等的四边形是菱形,C,(2).对角线互相垂直且平分的四边形是()A.矩形B.一般的平行四边形C.菱形D.以上都不对,C,(3).下列条件中,不能判定四边形ABCD为菱形的是()A.ACBD,AC与BD互相平分B.AB=BC=CD=DAC.AB=BC,AD=CD,且ACBDD.AB=CD,AD=BC,ACBD,C,4、选择:,24,菱形,四边形ABCD是菱形.,OA=OC=4OB=OD=3,证明:,又AB=5,ACBD,AOB=90,又四边形ABCD是平行四边形,四边形ABCD是平行四边形,AB2=AO2+BO2,8、已知:如图,AD平分BAC,DEAC交AB于E,DFAB交AC于F求证:四边形AEDF是菱形,AEDF是菱形,证明:DEACDFAB,四边形AEDF是平行四边形,DEAC2=3,AD是ABC的角平分线1=2,AE=DE,1=3,9、如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH是菱形。,证明:连接AC、BD,四边形ABCD是矩形,AC=BD,点E、F、G、H为各边中点,EF=FG=GH=HE,四边形EFGH是菱形,E,F,把两张等宽的纸条交叉重叠在一起,你能判断重叠部分ABCD的形状吗?,思考:,请你动脑筋,如图,ADBC,BD垂直平分AC,四边形ABCD一定是菱形吗?若是,请说明理由。,思考题:,)1,2(,提示:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业产品质量检测标准培训材料
- 软件开发项目管理规范及案例分析
- 企业年终述职会议主持方案范文
- 地方高考理综试题综合解析
- 医疗设备故障快速响应与维修指南
- 发电机安全操作规范与培训模板
- 单位车辆管理使用与报废流程标准
- 三级人力资源管理师考试重点总结
- 办公自动化软件教学与操作指南
- 能源行业节能减排管理办法汇编
- 非ST段抬高型急性冠脉综合征诊断和治疗指南(2024)解读
- 2025年中国张裕产区葡萄酒特色与品牌国际化发展报告
- 耳机品质协议书范本
- 2025版VI设计合同范本
- 人美版五年级上册5.绘画中的透视现象一等奖教案设计
- 从法律出发理解与应用新清单标准
- 2024-2025学年下学期高一英语人教版同步经典题精练之语法填空
- 公司销售人员激励方案
- 《急性心肌梗死急救指南》课件
- 提高市政雨水管道接口施工一次验收合格率
- 2025年有机化学实验模板
评论
0/150
提交评论