选修2-3《第二章 随机变量及其分布》本章归纳整合_第1页
选修2-3《第二章 随机变量及其分布》本章归纳整合_第2页
选修2-3《第二章 随机变量及其分布》本章归纳整合_第3页
选修2-3《第二章 随机变量及其分布》本章归纳整合_第4页
选修2-3《第二章 随机变量及其分布》本章归纳整合_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

知识网络,本章归纳整合,知识网络,离散型随机变量及其分布列(1)随机变量:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示在这个对应关系下,数字随着试验结果的变化而变化像这种随着试验结果变化而变化的变量称为随机变量通常用字母X,Y,等表示(2)离散型随机变量:所有取值可以一一列出的随机变量称为离散型随机变量(3)离散型随机变量的分布列:,要点归纳,一、,1,一般地,若离散型随机变量X可能取的不同值为x1,x2,xi,xn,X取每一个值xi(i1,2,n)的概率P(Xxi)pi,以表格的形式表示如下:,我们将上表称为离散型随机变量X的概率分布列,简称为X的分布列有时为了简单起见,也用等式P(Xxi)pi,i1,2,n表示X的分布列(4)离散型随机变量的分布列的性质:pi0,i1,2,n;,(5)常见的分布列:两点分布:如果随机变量X的分布列具有下表的形式,则称X服从两点分布,并称pP(X1)为成功概率.,其中mminM,n,且nN,MN,n,M,NN*.如果随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布二项分布及其应用,2,(2)条件概率的性质:0P(B|A)1;必然事件的条件概率为1,不可能事件的条件概率为0;,(4)独立重复试验:一般地,在相同条件下重复做的n次试验称为n次独立重复试验(5)二项分布:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为,P(Xk)Cpk(1p)nk,k0,1,2,n.此时称随机变量X服从二项分布,记作XB(n,p),并称p为成功概率两点分布是当n1时的二项分布,二项分布可以看成是两点分布的一般形式离散型随机变量的均值与方差(1)均值、方差:一般地,若离散型随机变量X的分布列为,3,则称E(X)x1p1x2p2xipixnpn为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平,(2)均值与方差的性质:若YaXb,其中a,b是常数,X是随机变量,则Y也是随机变量,且E(aXb)aE(X)b,D(aXb)a2D(X)(3)常见分布的均值和方差公式:两点分布:若随机变量X服从参数为p的两点分布,则均值E(X)p,方差D(X)p(1p)二项分布:若随机变量XB(n,p),则均值E(X)np,方差D(X)np(1p),曲线与x轴之间的面积为1.(3)和对正态曲线的影响:当一定时,曲线的位置由确定,曲线随着的变化而沿x轴平移;当一定时,曲线的形状由确定,越小,曲线越“瘦高”,表示总体的分布越集中;越大,曲线越“矮胖”,表示总体的分布越分散,(4)正态分布的3原则:若随机变量XN(,2),则P(X)0.6826,P(2X2)0.9544,P(3X3)0.9974.在实际应用中,通常认为服从于正态分布N(,2)的随机变量X只取(3,3)之间的值,并简称之为3原则,专题一条件概率,解决概率问题要注意“三个步骤,一个结合”(1)求概率的步骤是:第一步,确定事件性质;第二步,判断事件的运算;第三步,运用公式(2)概率问题常常与排列、组合知识相结合,2,在5道题中有3道理科题和2道文科题如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率解设“第1次抽到理科题”为事件A,“第2次抽到理科题”为事件B,则“第1次和第2次都抽到理科题”为事件AB.,【例1】,求相互独立事件一般与互斥事件、对立事件结合在一起进行考查,解答此类问题时应分清事件间的内部联系,在些基础上用基本事件之间的交、并、补运算表示出有关事件,并运用相应公式求解特别注意以下两公式的使用前提(1)若A,B互斥,则P(AB)P(A)P(B),反之不成立(2)若A,B相互独立,则P(AB)P(A)P(B),反之成立,专题二相互独立事件的概率,1,2,【例2】,离散型随机变量的分布列在高中阶段主要学习两种:超几何分布与二项分布,由于这两种分布列在生活中应用较为广泛,故在高考中对该知识点的考查相对较灵活,常与期望、方差融合在一起,横向考查对于分布列的求法,其难点在于每个随机变量取值时相关概率的求法,计算时可能会用到等可能事件、互斥事件、相互独立事件的概率公式等均值与方差都是随机变量重要的数字特征,方差是建立在均值这一概念之上的,它表明了随机变量所取的值相对于它的均值的集中与离散程度,二者联系密切,在现实生产生活中特别是风险决策中有着重要意义,因此在当前的高考中是一个热点问题,专题三离散型随机变量的分布列、均值与方差,1,2,3,(1)求该学生考上大学的概率;(2)如果考上大学或参加完5次测试就结束,记该生参加测试的次数为X,求X的分布列及X的数学期望,【例3】,(1)写出的概率分布列(不要求计算过程),并求出E(),E();(2)求D(),D()请你根据得到的数据,建议该单位派哪个选手参加竞赛?,【例4】,解(1)的概率分布列为,正态密度曲线恰好关于参数对称,因此充分利用该图形的对称性及3个特殊区间内的概率值来求解其他区间的概率值,是一种非常简捷的方式,也是近几年高考的一个新动向,专题四正态分布,某市去年高考考生成绩服从正态分布N(500,502),现有25000名考生,试确定考生成绩在550600分的人数,【例5】,本章知识在高考中占有十分重要的地位,这是因为:一方面本章

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论