已阅读5页,还剩53页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,一次函数整章复习,2,一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量;,二、函数的概念:,函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数,3,三、函数中自变量取值范围的求法:,(1).用整式表示的函数,自变量的取值范围是全体实数。(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。(3)用奇次根式表示的函数,自变量的取值范围是全体实数。用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。例如不能取负数,不能取小数等,4,四.函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象,下面的个图形中,哪个图象中y是关于x的函数,5,1、列表(表中给出一些自变量的值及其对应的函数值。),2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。,3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。,五、用描点法画函数的图象的一般步骤:,注意:列表时自变量由小到大,相差一样,有时需对称。,6,六、函数有三种表示形式:,7,七、正比例函数与一次函数的概念:,一般地,形如y=kx(k为常数,且k0)的函数叫做正比例函数.其中k叫做比例系数。,当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.,一般地,形如y=kx+b(k,b为常数,且k0)的函数叫做一次函数.,8,(1)图象:正比例函数y=kx(k是常数,k0)的图象是经过原点的一条直线,我们称它为直线y=kx。(2)性质:当k0时,直线y=kx经过第一,三象限,从左向右上升,即随着x的增大y也增大;当k0时,图象过一、三象限;y随x的增大而增大。当k0b0,k0b0,k0,k0bax+3不等式的解集为,X1,38,一次函数中数形结合思想方法的应用,39,1.如图,直线AB与y轴,x轴交点分别为A(0,2)B(4,0),问题1:求直线AB的解析式及AOB的面积.,问题2:当x满足什么条件时,y0,y0,y0,0y2,当x4时,y0,当x=4时,y=0,当x4时,y0,当0x4时,0y2,40,问题3:在x轴上是否存在一点P,使?若存在,请求出P点坐标,若不存在,请说明理由.,1,7,P(1,0)或(7,0),41,问题4:若直线AB上有一点C,且点C的横坐标为0.4,求C的坐标及AOC的面积.,0.4,问题5:若直线AB上有一点D,且点D的纵坐标为1.6,求D的坐标及直线OD的函数解析式.,1.6,D,C点的坐标(0.4,1.8),D点的坐标(0.8,1.6),y=2x,42,问题6:求直线AB上是否存在一点E,使点E到x轴的距离等于1.5,若存在求出点E的坐标,若不存在,请说明理由.,1.5,1.5,问题7:求直线AB上是否存在一点F,使点F到y轴的距离等0.6,若存在求出点F的坐标,若不存在,请说明理由.,E点的坐标(1,1.5)或(7,-1.5),F点的坐标(0.6,1.7)或(-0.6,2.3),43,A,2,O,4,B,x,y,问题8:在直线AB上是否存在一点G,使若存在,请求出G点坐标,若不存在,请说明理由.,G(2,1)或(6,-1),问题9:在直线AB上是否存在一点H,使若存在,请求出H点坐标,若不存在,请说明理由.,H(1,1.5)或(-1,2.5),44,问题10:已知x点A(-4,0),B(2,0),若点C在一次函数的图象上,且ABC是直角三角形,则满足条件点C有()A.1个B.2个C.3个D.4个,45,问题11:如图,直线AB与y轴,x轴交点分别为A(0,2)B(4,0),以坐标轴上有一点C,使ACB为等腰三角形这样的点C有()个A.5个B.6个C.7个D.8个,A,2,O,4,B,x,y,46,一次函数中方案的选择问题,1、某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师,现有甲、乙两种大客车,它们的载客量和租金如下表:,(1),(1)共需租多少辆汽车?,(2)给出最节省费用的租车方案?,47,要求:(1)要保证240名师生有车坐。(2)要使每辆车至少要有1名教师。,解:(1)共需租6辆汽车.,(2)设租用x辆甲种客车.租车费用为y元,由题意得y=400 x+280(6-x),化简得y=120 x+1680,x是整数,x取4,5,k=120O,y随x的增大而增大,当x=4时,Y的最小值=2160元,48,2(9分)5月12日,我国四川省汶川县等地发生强烈地震,在抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要25台,乙地需要23台;A、B两省获知情况后慷慨相助,分别捐赠该型号挖掘机26台和22台并将其全部调往灾区如果从A省调运一台挖掘机到甲地要耗资0.4万元,到乙地要耗资0.3万元;从B省调运一台挖掘机到甲地要耗资0.5万元,到乙地要耗资0.2万元设从A省调往甲地台挖掘机,A、B两省将捐赠的挖掘机全部调往灾区共耗资y万元请直接写出y与x之间的函数关系式及自变量x的取值范围;,调入地,调出地,A(26台),B(22台),甲(25台),乙(23台),x,25-x,26-x,X-3,0.4,0.5(),0.3(),0.2(),Y=0.4x+0.5(25-x)+0.3(26-x)+0.2(X-3),Y=-0.2x+19.7,(3x25),49,若要使总耗资不超过15万元,有哪几种调运方案?,Y=-0.2x+19.7,(3x25),-0.2x+19.715,X23.5,x是整数.x取24,25,即,要使总耗资不超过15万元,有如下两种调运方案:方案一:从A省往甲地调运24台,往乙地调运2台;从B省往甲地调运1台,往乙地调运21台方案二:从A省往甲地调运25台,往乙地调运1台;从B省往甲地调运0台,往乙地调运22台,50,怎样设计调运方案能使总耗资最少?最少耗资是多少万元?,51,3.已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元(1)求y(元)与x(套)的函数关系式,并求出自变量的取值范围;(2)当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?,52,4.我市某中学要印制本校高中招生的录取通知书,有两个印刷厂前来联系制作业务甲厂的优惠条件是:按每份定价15元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价15元的价格不变,而制版费900元六折优惠且甲、乙两厂都规定:一次印刷数至少是500份(1)分别求两个印刷厂收费y(元)与印刷数量x(份)的函数关系式,并求出自变量x的取值范围;(2)如何根据印刷的数量选择比较合算的方案?如果这个中学要印制2000份录取通知书,那么应选择哪个厂?需要多少费用?,53,1.已知一次函数y=kx+b的图象经过(-1,-5),且与正比例函数y=X的图象相交于点(2,a),求:(1)a的值;(2)一次函数的解析式;(3)这两个函数图象与x轴所围成的三角形面积.,一次函数图象中的面积有关问题,54,2.如图,A,B分别是x轴上位于原点左,右两侧的点,点P(2,P)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,(1)求的面积;(2)求点A的坐标及P的值;(3)若,求直线BD的函数解析式.,55,3.直线分别交x轴,y轴于A,B两点,O为原点.(1)求AOB的面积;(2)过AOB的顶点,能不能画出直线把AOB分成面积相等的两部分?写出这样的直线所对应的函数解析式,56,某医药研究所开发了一种新药,在实际验药时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时)的变化情况如图所示,当成年人按规定剂量服药后。(1)服药后_时,血液中含药量最高,达到每毫升_毫克,接着逐步衰弱。(2)服药5时,血液中含药量为每毫升_毫克。,练习:,57,某医药研究所开发了一种新药,在实际验药时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时)的变化情况如图所示,当成年人按规定剂量服药后。(3)当x2时y与x之间的函数关系式是_。(4)当x2时y与x之间的函数关系式是_。(5)如果每毫升血液中含药量3毫克或3毫克以上时,治疗疾病最有效,那么这个有效时间是_时。,y=3x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮北理工学院《健康行为学》2024-2025学年第一学期期末试卷
- 山西省大同市灵丘县2025-2026学年高二物理第一学期期末统考模拟试题含解析
- 2025年山东省青岛即墨区生物高二上期末学业水平测试模拟试题含解析
- 湖北省襄阳第四中学2025年高二上生物期末检测模拟试题含解析
- 2024年丰都县辅警协警招聘考试真题含答案详解(研优卷)
- 2023年遂宁辅警招聘考试真题含答案详解(模拟题)
- 浙江水利水电学院《摄像技艺》2024-2025学年第一学期期末试卷
- 云南司法警官职业学院《简笔画与板报设计》2024-2025学年第一学期期末试卷
- 2026届甘南市重点中学高二生物第一学期期末复习检测模拟试题含解析
- 试卷预测及分析(3篇)
- 儿童特发性矮身材诊断与治疗中国专家共识(2023版)解读
- 人工造林项目投标方案
- 湖北18定额说明及计算规则
- 2023年政府采购评审专家入库考试题型及答案
- 2023-2024学年曲靖市富源县数学六年级第一学期期末检测试题含答案
- 设计色彩-林家阳课件
- 鞋品按款式分类表
- 建筑结构体系
- 120个文言实词小故事全文翻译附学生填空版
- 农村综合性改革试点试验方案
- XXX项目部驻地建设、装修方案
评论
0/150
提交评论