数学人教版八年级上册勾股定理.ppt_第1页
数学人教版八年级上册勾股定理.ppt_第2页
数学人教版八年级上册勾股定理.ppt_第3页
数学人教版八年级上册勾股定理.ppt_第4页
数学人教版八年级上册勾股定理.ppt_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、八年级数学下册 (人教版),17.1勾股定理(1),吐尔逊娜依,精河县大河沿子镇第一中学,情境引入,相传2500年前,毕达哥拉斯有一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系注意观察,你能有什么发现?,毕达哥拉斯(公元前572-前492年), 古希腊著名的哲学家、数学家、天文学家。,2、在这个问题中,等腰直角三角形三边有什么特殊关系?,结论:以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.即SA+SB=SC,等腰直角三角形两直边的平方和等于斜边的平方,1、你能找出A、B、C的面积有什么样的关系?,A,B,C,结论: SA

2、+SB=SC,(1)观察右边 两幅图:,(2)填表(每个小正方形的面积为单位1):,4 9,16 9,?,?,探究,7,3,4,“补”的方法,SC = S大正方形 - 4S小直角三角形,(1)观察右边 两幅图:,(2)填表(每个小正方形的面积为单位1):,4 9,16 9,13,25,探究,4 9,16 9,13,25,探究,根据表中数据,你得到了什么?,结论,(1)你能用直角三角形的两直角边的长a、b和斜边长c来表示图中正方形的面积吗?,(2)你能发现直角三角形三边长度之间存在什么关系吗?,继续思考,直角三角形的两条直角边的平方和等于斜边的平方.,命题,如图,在RtABC中,C=90,A、B

3、和C所对的三条边分别是a、b、c. 求证:,请先用手中的全等直角三角形按图示进行摆放,然后根据图示的边长,选择其中一个图形,分析其面积关系后证明.,证明定理,图1,解:,自主证明,图2,图3,如果直角三角形两直角边分别为a、b, 斜边为c,那么,即 直角三角形两直角边的平方和 等于斜边的平方.,表示为:RtABC中,C=90,,则,定理:,1.成立条件: 在直角三角形中;,3.作用:已知直角三角形任意两边长, 求第三边长.,2.公式变形:,(注意:哪条边是斜边),1.求下列图中表示边的未知数x、y、z的值.,比一比看看谁算得快!,2.求下列直角三角形中未知边的长:,可用勾股定理建立方程.,方法小结:,8,x,17,16,20,x,12,5,x,x=15,x=12,x=13,本课我们学习了哪些知识? 用了哪些方法? 你有哪些体会?,课堂小结,作业,1. 大练习册课时作业第18页.,2. 课下每个同学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论