夹具设置规划和夹具配置系统.pdf

夹具类外文翻译-夹具设置规划和夹具配置系统【中文3140字】【PDF+中文WORD】

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图
编号:119207783    类型:共享资源    大小:3.54MB    格式:ZIP    上传时间:2021-03-28 上传人:资料****站 IP属地:河南
15
积分
关 键 词:
中文3140字 夹具 外文 翻译 设置 规划 配置 系统 中文 3140 PDF WORD
资源描述:
夹具类外文翻译-夹具设置规划和夹具配置系统【中文3140字】【PDF+中文WORD】,中文3140字,夹具,外文,翻译,设置,规划,配置,系统,中文,3140,PDF,WORD
内容简介:
2212-8271 2013 The Authors. Published by Elsevier B.V.Selection and peer-review under responsibility of Professor Pedro Filipe do Carmo Cunhadoi: 10.1016/cir.2013.05.039 Procedia CIRP 7 ( 2013 ) 228 233 Forty Sixth CIRP Conference on Manufacturing Systems 2013 Fixture and Setup Planning and Fixture Configuration System Rtfalvi Attila a*, Michael Stampfer.b, Szegh Imre cSubotica Tech, Marka Orekovi a 16, 24000 Subotica, Serbia Unuversity of Pcs ,Rkus u.2 , 7625 Pcs, Hungary Budapest University of Technology and Economics, Egri Jzsef u. 1, H-1111 Budapest, Hungary * Corresponding author. Tel.: +381-24-655-222; fax: +381-24-655-255,.E-mail address: ratoszvts.su.ac.rs Abstract By automating the tasks of the fixture design and configuration we can save considerable time, and spare the process engineer from a tiresome work. In this paper a system is introduced that gives us recommendations on the number and the order of the needed setups, and proposals on the appropriate fixtures needed at machining a given workpiece. The input data are the CAD model of the workpiece saved in IGES format, and the technological requirements. The output data are the CAD models of the needed fixtures. 2013. Rtfalvi A., Stampfer M., Szegh I. Published by Elsevier B.V. Selection and/or peer-review under responsibility of Professor Pedro Filipe do Carmo Cunha Keywords: fixture planning; fixture design 1. Introduction Fixtures help us to increase the productivity and the precision of the workpiece. The productivity is increased through decreasing the time needed for taking off the finished workpiece, and setting up the new one, and through increasing the cutting parameters due to stable supporting and clamping of the workpiece. Increased precision can be achieved with the help of precise locating and stable supporting and proper clamping of the workpiece. From these requirements follows that we have to carefully select the datum surfaces on the workpiece for supporting, locating and clamping, and then have to carefully choose out the functional fixture elements, and find for them such layout, which will ensure unhindered motion of the tools. Of course to reduce the stand time we also must keep the number of setups as low as possible. Often, to find an acceptable layout, we have to work out several datum surface combinations, and for each a fixture element layout while we find an acceptable solution. This is a tiresome and time-consuming process, and in order to speed up this process we have developed a system that gives proposals on the needed setups and can build a fixture for any accepted proposal. The built fixtures can be visualized in Solid Edge environment, and can be easily changed if eventually something should be changed. Since a system that is capable to give solution for any workpiece machine tool combination would be enormous; our work is confined on box-shaped parts (first of all gearbox houses) that are machined on horizontal machining centers. 2. Literature overview Since it is an ancient desire of the process engineers to make somehow quicker and easier the setup and fixture planning and the fixture design, there were numerous attempts to algorithm these tasks. Some attempts focused on setup automation; others on fixture planning Kulankara and Melkote1, Necmetin2, Wang et al.3; some on fixture design Gaoliang et al.4, Shasha et al.5, Zhou et al.6; and of course there were attempts to solve all these tasks within one system. Farhan and Tolouei7 developed a Solid Works based fixture planning and design system. These are only a few of the most recent results. Available online at 2013 The Authors. Published by Elsevier B.V.Selection and peer-review under responsibility of Professor Pedro Filipe do Carmo Cunha229 Rtfalvi Attila et al. / Procedia CIRP 7 ( 2013 ) 228 233 3. Systematization of the main fixturing tasks in case of box-shaped parts Due to the great variety in shape, size and material of the workpieces it would take a huge system to classify all the workpiece types and the best fixture types for each, but the subtask like supporting, locating and clamping can be typed. In Fig. 1 the different supporting (primary locating) types on horizontal machining center are shown. Fig. 1. Supporting types In case of pos1 four sides of the workpiece can be machined in one setup, in case of pos2 three sides, in case of pos3 three sides plus the fourth side partly - through the openings on supporting side. Fig. 2 presents the different guiding (secondary locating) and end stopping (tertiary locating) types. Fig. 2. Side locating types There are 4 types of side locating (guiding) established (fig.2): (1) side locating with the help of surfaces adjoining to the supporting face, (2) side locating with the use of two inside diameters on the supporting face, (3) side locating with utilization of one inside diameter laying on the supporting face and one face adjacent to the supporting face, (4) side locating with application of two threaded joints (with fitted shaft screws) on the supporting face. In Fig. 3 one can see the different types of clamping most commonly used for box-shaped parts. Based on the clamping force direction one can distinguish (fig.3) perpendicular clamping (s1) the clamping force is perpendicular to the supporting surface - and parallel clamping (s2) the clamping force is parallel with the supporting surface. Fig. 3. Clamping types The basic type s1, depending on location of the clamping faces, can be further divided into subtypes s11, s12 and s13. In the case of s11 the clamping surfaces are the closest parallel faces to the plane-locating (supporting) surface. In the case of s12 the clamping surface(s) is on the opposite side of the plane locating face. By s13 the clamping is carried out using a trough hole on the workpiece. One special way of clamping is clamping by screws and threaded joints on the plane locating face (s3). In this case the clamping forces are acting perpendicular, but the force transmission happens in different way. The number of clamping points is also a very important characteristic of a clamping. We distinguish clamping in one, two, three or four points. If we supplement the previous basic types with this information, the possible clamping types are obtained: s11_2, s11_3, s11_4; s12_2, s12_3, s12_4; s13_1, s13_2; s2_1, s2_2; s3_2, s3_3, s3_4. In the enumerated notation the last number means the number of clamping points. 4. The structure of the system The planned system consists of four modules: 1) The CAD model post processing/fixture pre processing module (IPPO) which analyzes the curves and surfaces on the CAD model of the workpiece, extracts their most important characteristics, and organize them into technological and fixturing features. 2) The setup and fixture planning module (SUPFIX) which, on the base of the output data of the previous module, gives proposal on the number and order of the needed setups, and proposal on the conceptual solution of the needed fixture(s). 230 Rtfalvi Attila et al. / Procedia CIRP 7 ( 2013 ) 228 233 3) The operation-planning module (OP) this module is not constructed yet. The role of this module will be to decompose the setups onto particular cuts, to select concrete tools for each cut, and to determine the cutting parameters for each cut. 4) The fixture configuration module (FIXCO) for the accepted conceptual solutions tries to build concrete fixture assemblies. These assemblies with the help of a little VB program (GLUE) can be opened in Solid Edge assembly environment; where interference check can be done, and - if necessary even further changes can be made. The fixture documentation in the possession of these can be easily and quickly made. The CAD model of the assembled fixture can be opened with a CAM program, and there the fixture elements can be marked as check bodies, and this way such tool paths generated, where the tool does not collide with fixture elements. In Fig. 4 one can see the schematic view of the system. Fig. 4. The setup and fixture planning and fixture design system 4.1. The CAD model post-processing module This module analyzes all the curves and surfaces of the workpiece model, and tries to organize them into features, and extracts the characteristic data of the assumed feature. The types of the features the module can recognize are shown in Fig. 5, these are different kind of holes (blind or through holes with or without thread, with or without sinkage, with or without slots), different raised (boss top) surfaces, different sinked (pocket bottom) surfaces, group of surfaces laying on the same “height”. Fig. 5. The most common features on gearboxes 231 Rtfalvi Attila et al. / Procedia CIRP 7 ( 2013 ) 228 233 Such surface groups (tf5 03) can further be divided into subgroups depending on the global form they are forming, and on the number of the members of the group (Fig. 6). Fig. 6. Subgroups of the surface groups Of course the sort of recognized features can be further increased - if necessary by adding new rules to the system. The characteristic data of the features or surfaces (dimensioned in the figures) are automatically extracted from the model. These data are important first of all from the technological aspect, but some of them from fixturing aspect too. The features and surfaces are classified on the basis of their shape, size and location. For example too small surfaces, or surfaces with a shape that certainly can not be used neither for supporting, nor for guiding, end stopping or clamping are eliminated in order to reduce the time needed for the next module to find an acceptable solution. The workflow looks like this, the user (process engineer) opens the CAD model of the workpiece saved in IGES format, and checks the recognized features, prescribes which features or surfaces has to be machined, with what precision, then prescribes the relationship tolerances, and finally saves the data. A more detailed description about this module can be read in 8. 4.2. The setup and fixture planning module The user opens with this module the saved file containing the output data of the previous module, and visually checks the modules proposals on the conceptual solution of the fixture for the main setup, and if likes it the user can accept it. After that the user visually checks the modules proposals on the conceptual solution for the auxiliary setup(s), and can accept or refuse it. If a conceptual solution is refused, the module searches for another conceptual solution. At first the module gives proposals for the main setup (where the most important tolerances are machined), proposal on the type of the supporting, and on the surface(s) to be used for supporting, proposal on the type of the locating, and on the surface(s) to be used for locating, and proposal on the type of the clamping, and the surface(s) to be used for clamping. First, it tries to find such orientation for the workpiece in which all tolerance connected sides of the workpiece can be machined in the same setup this is the technologically ideal orientation. If this does not succeed, then it tries to find such orientation where all strictly connected sides can be machined in the same setup (loose tolerances are left out from consideration). If this attempt brings no success either, then it tries to find such orientation where at least all strictly connected features (surfaces) can be machined in the same setup. If none of the mentioned strategies bring fruit, then one must machine some strictly connected tolerances in different setups (what means that complicated and expensive features have to be used). The size and shape of the supporting surface candidates are examined; firstly big enough flat surfaces are taken in consideration, secondly big enough cylindrical, thirdly big enough groups of flat surfaces. Apart from size and shape, the locating surface candidates are also investigated from the aspect of location, too. The clamping surface candidates are also examined from the aspects of size, shape and location, and except that from the aspect of possible force closing direction, since it is the best when the greatest cutting force is in form closed way hindered. This module is more detailed introduced in 9. 4.3. The fixture configuration module The user opens one of the output files (either the one that contains the conceptual solution for the main, or the one that contains the conceptual solution for the auxiliary setup) generated by the previous module, and this module tries to build an acceptable fixture. The built fixture applies the supporting method proposed in the conceptual solution, on the surface(s) recommended for supporting, selects the type and the size of the supporting elements, and puts them on appropriate 232 Rtfalvi Attila et al. / Procedia CIRP 7 ( 2013 ) 228 233 position relative to the workpiece, which is rotated to work position. Also it selects the type and the size of the locating elements in accordance with the proposed type of locating (this way the search place is significantly reduced, so the fixture building time is cut down). The selected locating elements are put in the appropriate position relative to the workpiece. Finally, it selects the clamping elements, which are eligible for the proposed clamping type, defines their size so that the contact area between the workpiece and the clamping element is large enough. The gridhole in which the clamping element is directly mounted, or with the help of some adapting elements, must be as close to the clamping place as it is possible, in order to minimize the moment acting on the clamping element. Adopting elements are not always used, only in cases when the clamping or locating surface is too far (for example, too high) from the closest grid hole on the base plate. The number of adapting elements must be minimized, thus the precision and the rigidity of the fixture is greater. 5. Results of a test run In Fig. 7 a typical box-shaped part is presented, a gearbox housing cast in sand from gray cast iron. The most important tolerances are dimensioned on the part, for better understanding one piece is broken out. Fig. 7. Gearbox housing In Fig. 8 the surfaces machined during the first setup are marked (the bottom, and the four through holes on it), in Fig. 9 the surfaces machined during the second setup are marked. In Fig. 10 the proposed conceptual solution for the first (auxiliary) setup is presented. On the basis of the proposal, the workpiece during the first setup (where the datum surfaces of the second setup are machined) should be laid on the violet ring-like surface (the proposed supporting type is pos1), should be positioned over the four red inner cylindrical surfaces and the gray (black) flat angled surface (the proposed locating type is p3). The clamping should be executed on the green ring-like surface (the proposed clamping type Fig. 8 Surfis s13). aces machined during the first setup The fixture built by the FIXCO module on the basis ofroposed conceptual solution for the sea screw is put to bridge the missing distance. Fig. 9 Surfaces machined during second setup these recommendations can be seen in Fig. 11, where the fixture together with the workpiece is shown. In Fig. 12 the same fixture is presented without the workpiece. The workpiece is laid on the three gold colored adjustable supports, located with the help of three blue straight bolts (centering) and the adjustable stop (direction), clamped with the help of a strud and an open strap (the nut is not put) over a through hole. Since the strud is not long enough, an adapter element is needed too, a tie-rod bolt. In Fig. 13 the pcond (main) setup is shown. The workpiece should be laid on the violet flat surfaces (the proposed supporting type is pos1), should be located over the black and red through holes (the proposed locating type is p22), and should be clamped over the four green flat surfaces (s11 type clamping is proposed). In Fig. 14 the built fixture can be seen together with the workpiece, in Fig. 15 the built fixture without the workpiece can be seen. For supporting a special base plate is used without gridholes. The holes for locating pins are machined on the appropriate place depending on the workpiece. The locating elements are the two gold colored straight bolts. Four hook clamps are selected for fulfilling the clamping task, and (since their adjustability is not enough) in each 233 Rtfalvi Attila et al. / Procedia CIRP 7 ( 2013 ) 228 233 Rtfalvi A., Stampfer M., Szegh I./ Procedia CIRP 46th (2013) 000000 Fig. 10. The proposed conceptual solution for the first (auxiliary) setup Fig. 11. The built fixture for the first setup with the workpiece Fig. 12. The built fixture for first setup wihtout the workpiece Fig. 13. The proposed conceptual solution for the second (main) setup Fig. 15. The built fixture for the second setup without the workpiece 6. Conclusion In this paper a fixture planning and design system is presented, which makes the work of the process engineer easier and quicker. The system was tested for several industrial parts, and gave good results (in view of the accuracy, the possible simplest structure of the fixture and enough stability). When the operation planning module of the s
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:夹具类外文翻译-夹具设置规划和夹具配置系统【中文3140字】【PDF+中文WORD】
链接地址:https://www.renrendoc.com/paper/119207783.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!