双燃料发动机供给系统的设计--天然气供气【4张cad图纸+文档全套资料】
收藏
资源目录
压缩包内文档预览:(预览前20页/共58页)
编号:129936995
类型:共享资源
大小:1.20MB
格式:ZIP
上传时间:2021-05-26
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
50
积分
- 关 键 词:
-
燃料
发动机
供给
系统
设计
天然气
供气
cad
图纸
文档
全套
资料
- 资源描述:
-
喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,图纸为CAD格式可编辑,【有疑问咨询QQ:414951605 或 1304139763】
- 内容简介:
-
中文题目:双燃料发动机供给系统的设计外文题目:The supply system of Dual-fuel engine design毕业设计(论文)共57页(其中:外文文献及译文19页) 图纸共4张 完成日期 2008年5月 答辩日期 2008年6月摘要 严重的环境问题和紧张的石油资源使全球汽车工业的发展面临着严重的挑战。为了满足环境保护以及可持续发展不断提高的要求,使用对环境友好的清洁的能源汽车,以替代消耗石油等不可再生资源并对大气污染严重的内燃机动力汽车已成为当今社会的迫切需要。 压缩气体燃料发动机(气动发动机)将气提燃料中存储的能量转化为扭矩形式的机械能输出,不消耗石油燃料,作为汽车动力可以使汽车真正成为“绿色”、 “零污染”的清洁汽车。本文就在现有柴油机基础上,加装一套天然气供气系统,争取在尽量少改动原来发动机供油系统的基础上,实现清洁排放。说明了工作原理,对供气系统的关键组成零件进行了设计。关键词:CNG发动机供气系统;双燃料系统;减压阀;安全阀AbstractThe development of automobile industry is challenged by the more serious pollution and the shortage of petroleum in the world. For satisfying the increasing demand of environmental protection and sustainable development, the environment-friendly clean vehicle is called for to replace the combustion one which exhausts the irreproducible mineral resources and even worse, heavily pollutes the air.Without using any mineral fuel,the compressed air fuel engine (air-powered engine),which outputs the mechanical energy transformed from the compressed air energy into the torque form, is of completely green and zero pollution emission.On the basis of the existing diesel engine, a gas supply system is installed in this paper. As possible as to change the original engine oil supply system, this system achieves cleaner emissions on the basis of original engine .This paper designs the main component parts of the gas supply for this system. Key words: CNG engine gas supply system; Dual-fuel systems; Reducing valve; Safety valveI目录前言11天然气汽车21.1天然气汽车的发展现状21.2天然气汽车存在的问题21.3发展我国天然气汽车的对策32供气量的理论计算52.1发动机参数选择52.2发动机所需参数的计算62.3天然气供气量计算62.3.1掺烧气体燃料对充气效率的影响62.3.2不同工况下的CNG供给量72.3.3 CNG量的计算83减压阀的设计93.1减压阀的原理93.2减压阀的设计103.2.1一级减压阀设计103.2.2二级减压阀的设计153.2.3三级减压阀的设计183.2.4减压阀换热量的计算204安全阀的设计224.1安全阀的有关概念224.2安全阀的设计225喷射器的设计266供气系统的其他零件和气体燃料发动机的新技术296.1储气瓶数量的确定296.2供气系统的其他零件296.3天然气汽车的研究热点及发展趋势307经济技术分析327.1现今的双燃料供气系统327.2各种供气技术比较338结论33致谢35参考文献36附录A 译文37附录B 外文文献44辽宁工程技术大学毕业设计(论文)前言石油短缺和生态恶化是21世纪人类面临的主要问题,能源的短缺将直接影响各国经济的持续发展,而环境污染则直接威胁着人类的健康和生存。天然气是当今世界能源的重要组成部分,它与煤炭、石油并列为世界能源的三大支柱。据研究资料显示,世界已探明的石油储量,按汽车现在消耗的速度,还能支撑40-70年。而已探明的天然气储量,预计可以开采200年。从这个意义上讲,天然气汽车是21世纪汽车工业发展的一个重要方向。,因此对天然气在汽车上的使用研究具有重要的应用价值。本文就发动机的供气系统展开了设计,并讨论了它的应用前景 1。1天然气汽车1.1天然气汽车的发展现状 近二十多年来,世界天然气需求持续稳定增长,平均增长率保持在2%,专家预计2020年,天然气在世界能源组成中的比重将会增加到30%。21世纪天然气在世界能源结构中的比重将超过石油,成为世界第一大能源,21世纪将是一个天然气世纪。天然气是一种洁净的能源,主要成分是甲烷,燃烧后的主要生成物为二氧化碳和水,其产生的温室气体只有煤炭的1/2,是石油的2/3。天然气汽车则是以天然气作为燃料的汽车。按照天然气的化学成分和形态,可分为压缩天然气(CNG)汽车、液化天然气(LNG)汽车和液化石油气(LPG)汽车3种。近年来,天然气汽车在全球发展很快,在应用与运营方面比较成功。天然气汽车是一种理想的低污染车,与汽油与柴油车相比,它的尾气排放中CO下降约90%,HC下降约50%,NOx下降约30%,S02下降约70%,CO2下降约23%,微粒排放可降低约40%,铅化物可降低100%。可见天然气对环境造成的污染远远小于石油和煤炭,是一种优良的汽车发动机绿色代用燃料。同时,天然气汽车的使用成本较低,比燃油汽车节约燃料费约50%。此外,与电动汽车相比,天然气汽车的续驶里程长。有关专家认为天然气汽车是目前最具有推广价值的低污染汽车,尤其适合于城市公共交通和出租汽车使用。目前,它已在世界上得到广泛应用1。 根据最新资料显示,全世界约有四百万辆天然气汽车,其中中国约有九万七千多辆天然气汽车。目前,世界上有六七十个国家在进行压缩天然气的研发和使用,全世界约有三百六十七万多辆汽车使用压缩天然气作为动力。中国使用压缩天然气的汽车约有九万辆,主要分布在四川、陕西等西部地区。其中,四川省使用压缩天然气的汽车最多,达到四万八千辆,加气站也有一百八十多个。上海有四百余辆CNG公交大客车投入使用。可以预见,随着国内其他城市供气系统和全国范围内的加气站网络建设的完善,天然气汽车必将得到大力推广,天然气企业和天然气汽车行业的市场空间极为广阔。 1.2天然气汽车存在的问题 用天然气作为汽车动力有很多优势,如污染少,燃料经济性好、价格低等,但由于它与汽柴油在燃烧特性和储存方面有所不同,因而在天然气车的开发和应用中,存在如下问题: 1)动力性较低燃用天然气与汽油相比,混合气的热值低(天然气/空气混合气热值为3.36MJ/m3,汽油/空气混合气热值为3.82 MJ/m3,进气量少,分子变更系数少,动力性下降约20%。 2)供气体系建设有难度天然气汽车在国内大城市推广应用,必须建立相应的加气站及为加气站输送天然气的管道,这涉及到城市建设规划、经费投入和环境安全等诸多因素。而且建加气站的费用相当高,需5001000万元人民币,甚至更多。这个问题在一定程度上已经成为一些地区发展天然气汽车的瓶颈。 3)贮气瓶占用空间较大,携带不便1m3常压天然气装入20MPa的贮气瓶中,约占5L。而与之等热量的汽油(0.81kg)只占1.1L,CNG所占容积等于汽油的4.5倍(容积系数等于4.47)。要保证相同的续驶里程,天然气汽车贮气瓶的体积比汽车油箱就要大许多,相对降低了车辆的承载能力。贮气瓶在压力下的携带,技术上不是难题,但毕竟不如汽油和柴油方便。而且气瓶贮气量直接关系到行驶的里程。 4)汽车用户的初始投资较大天然气汽车的一些部件如贮气瓶、安全阀等,要求严格,成本较高。此外,尚未形成规模效益,使得它们的造价下降受限。对于目前采用的两用燃料车,则要在原车上另加一套价值数千元到数万元不等的天然气供气系统。 1.3发展我国天然气汽车的对策 1)加快天然气发动机关键技术的研究电子控制技术应用先进的电控技术对天然气发动机的燃料供给、点火定时等进行精确控制,是实现天然气汽车发动机高效率、低污染燃烧的关键之一。电控系统主要包括电控单元、传感器和执行机构等。 2)空燃比控制技术为协调发动机排放(NO/HC)、气耗率和可靠性,空燃比在整个万有特性图上的快速与精细控制是关键。 3)优化燃烧技术发动机燃烧技术和高能点火技术及其协调优化是实现最佳性能的必要条件。 4)先进的后处理技术由于欧排放法规不仅要求限制天然气发动机的非甲烷碳氢(NMHC),而且要求控制总碳氢排放(THC),先进的氧化型后处理技术就成为关键技术之一。 5)改善供气能力,加快加气站基础设施的建设 利用“西气东输”和进口天然气的管网建设在沿线和周边城市改善供气能力,为大力发展天然气汽车提供必要条件。影响天然汽车发展的一个重要的因素是加气站的建设。发展天然气必须有大量适用的加气站网点作保障。天然气汽车的发展要有计划有步骤的作好发展规划,逐步实施。各大城市,特别是有条件建设的城市应将天然气汽车加气站的建设列入城市的发展规划中,并尽早投入经费建立天然气的供气系统。 6)贮气瓶的研制 研制储存量大、耐高压、轻质的车载复合气瓶已是一个必须解决的重要关键技术。这方面国外已经成功地研制并生产了压力大于25MPa的复合材料气瓶,且其P/V(质量/容积)仅为0.6。我国应尽快开展这方面的研制工作。 7)政府政策的支持。2供气量的理论计算柴油机掺烧气体燃料,可以大幅度降低柴抽机的碳烟排放。天然气的流量会随着发动机的功率和转速的变化而变化,天然气的参与燃烧使得也使实际进气量减少。另外,许多气体燃料的理论空燃比高于柴油的理论空燃比,即燃用CNG需要更多的空气量。因此,合理分析掺烧气体燃料所占每循环的进气量百分比,在发动机的不同转速与功率提供合理的天然气量,具有重要的实际意义2.1发动机参数选择表2-1为某一柴油机的发动机的外特性数据表表2-1负荷特性数据表Table 2-1 Part throttle characteristics data转速n(r/min)121813911604182020022186239425882784转矩Me(Nm)330.8348.1368.1376.2369.8347.4342.5333.4324.9功率Pe(Kw)42.250.861.871.477.879.68690.594.9耗油率ge(g/kwh)242.4230.5226.5223.9220.6220.7220.9225.9230.1图2-1为该型号发动机的万有特性图2图2-1发动机的万有特性图Figure2-1 Mapping characteristics of engine2.2发动机所需参数的计算241)该发动机的最大有效功率和转速的理论关系:2)的时候 ,油耗和功率的关系:,最大油耗发生在,时,此时的油耗。3)假设汽车等速行驶,阻力功率和发动机功率的关系:,传动系的机械效率 ,则有:,柴油机。4)循环供油量:。5)全部燃烧时的热量:。2.3天然气供气量计算 根据两个基本假设:(1)等热值假设3,即以等热值的气体燃料替代由于掺烧而减少的柴油耗量。(2)等摩尔数假设,即以等摩尔数的气体燃料替代由于掺烧而减少的实际进气量,可以推出两个计算公式。2.3.1掺烧气体燃料对充气效率的影响1)分析中仅考虑额定负荷工况.设单独燃用柴油时每循环柴油耗量为kg,掺烧的气体燃料热值占柴油总热值的比例为,则掺烧后的柴油耗量为:3即: 根据前述等热值假设有:式中: 和分别为柴油和气体燃料的低热值,为掺烧气体燃料耗量。2)下图为掺烧CNG对充气效率和过量空气系数的影响3图2-2掺烧CNG对空气效率和过量空气系数的影响Figure2-2 The impact blended with CNG for volumetric efficiency and coefficient of excess air2.3.2不同工况下的CNG供给量由图2-2可以看出,CNG气体的比例对充量系数和过量空气系数影响较大,随着掺烧比例的加大,充量系数和过量空气系数逐渐下降。而充量系数和过量空气系数又与发动机的不同工况有关,所以应针对不同工况,选择合理的天然气供给比例 5。1)起动工况当发动机的转速低于怠速时,即认为发动机处于起动工况。此时发动机的温度较低,缸内气体的温度低,充量系数降低,由图2-2的关系可以看出,此时应减少天然气的供给比例,加大燃油供给量,从而实现低温下的顺利启动。2)怠速工况发动机已经运行稳定,此时进气温度提高,缸内气体温度提高,转速基本稳定,充量系数有所降低由图2-2可知需要较大天然气比例。3)加速运行工况负荷固定不变或变化较小的条件下,增大踏板位置,用以增加发动机的转速。此时进气门关闭时的缸内气体压力随负荷基本不变,而与转速的关系是增大转速,缸内气体压力减小,充量系数降低,由图2-2,应加大天然气供给比例,缸内气体温度基本稳定,充量系数影响较小。4)稳态运行工况即发动机运行在踏板位置和负荷固定不变或变化较小的条件下,发动机的转速可以保持恒定。此时发动机的进气量保持相对的稳定。天然气供给比例基本稳定。2.3.3 CNG量的计算全负荷条件下,天然气产生的热量为的30%,天然气量。天然气的密度,供气量。3减压阀的设计3.1减压阀的原理 减压调节器由一级减压腔、二级减压腔、三级减压腔组成。20MPa的天然气经过一级减压后,输出压力在11.5MPa范围内波动,二级减压后压力在0.5MPa6范围内波动,三级减压后压力在0.25MPa范围内波动,且其范围式可以调节的,下面说明它的工作原理:1)减压器未进气状态7减压器一、二级处于常开,三级经调整后处于常开状态,一级减压阀经调整调压螺栓1后,弹簧4被压缩,推动一级膜片9、下弹簧座6、一级阀芯5,使一级阀芯与高压密封片18间的阀口产生一级减压器处于常开状态。二级减压器膜片组15在二级弹簧16的作用下使二级减压器膜片组15的小三角板离开二级顶杆14,使二级阀杆14与二级阀口产生间隙处于常开状态。三级减压阀根据用途可设置成常开状态,也可调成常闭状态。2)减压器进气及工作状态当一级减压器进口,通入 15年1998年)。(2)只有符合欧盟II 的车和柴油的士才能发放牌照(1999年)。(3)柴油的含硫量减少到0.25 (1999年),然后到0.05 (2000年)。(4)以煤发电厂转向以优质煤发电(2000年)。(5)关闭重污染的行业(2001年)。(6)大力推广乘坐德里地铁(在2003-04年度;Mohan 和Kandya 2007 )。(7)在2001年4月,印度最高法院作出一个重大的决定, CNG燃料强制性应用在公共交通的法令新德里实施。这个具有里程碑意义的决定之后,到2001年7月,拥有压缩天然气车辆的总人数约有32884 (CPCB 2003年)号决议,这个数字上升到57240和94246在2002年3月和2005年4月。2.材料与方法2.1研究地区新德里是位于喜马拉雅山以南的160公里,海拔在的213.3和305.4米以上。由塔尔拉贾斯坦邦的沙漠在其西部和热的平原中央的印度在其南部地区所包围。城市面积1483平方公里,和1970年的350万人口相比,目前的人口约1300万。新德里在一年中气候主要是大陆性季风气候。夏季炎热干燥,冬天的寒冷是新德里气候的主要特征。正常的雨量是611.8mm。除了季风月份外,风向主要是由西风或西北风。在季风月份,偏东和南部的偏东风是较为常见的。我们已充分认识到,在新德里的空气中,一个主要空气污染物SPM的来源主要是汽车和工业废气排放,除了众多的国内燃煤单位和的经营在城市不同部位的发电厂。 2.2例子在三个不同的地点采样:Daryaganj(DG),MotiNagar(MN)和JNU,这些被选作研究。选择这些地点是基于当地的不同的交通密度和工业活动。关于采样地点的说明在表1中。采样是每月在这三个地点上同时进行的,是在为1998年(前天然气期)和2004年(后天然气期)。3个地点每个样本采集时间约60-70 h,使用8级安德森冲击(Andersen Instruments Inc.,美国)。撞击器的空气动力学直径10 ,9 ,5.8 ,4.7,3.3 ,2.1 ,1.1 ,0.65, 分别用于1-8阶段,用过滤器收集所有颗粒直径小于0.43的物质,流速保持在28.1 m/s。低量撞击采样是首选,以减少半挥发性PAH物质损失(Venkataraman 等人1994年)。其中采样PM10玻璃纤维过滤器(Coutant等人1988年)。撞击能100 收集到蒸气的压力低于10-9atm时的化合物(Zhang and McMurry 1991年),这里包括PAH物性的报道。玻璃纤维过滤器((Schleicher and Schull,德国)被用作衬底和收集后取样。在各个阶段测量PAH的浓度,采样时间和PAH与可吸入颗粒物平均颗粒浓度在表1给出。2.3所需化学品应从Supelco采购标准混合16多芳香族烃环保局指定的化合物(Bellefonte,PA,美国)。所有溶剂(甲苯,正己烷,甲醇,异丙醇,二氯甲烷等)用于样品处理和分析。2.4提取超声波提取后滤纸用气相色谱法和FID法检测和分析。滤纸被切割成薄带,在50毫升的甲苯中水浴15分钟,由频率20千赫超声搅拌后(Misonix XL型超声波处理器),分两次提取 。两次提取经过大幅混合和过滤后,然后集中由Roto-vapour (Buchi Rotova pour,瑞士)蒸至5毫升。然后集中在真空干燥器下的帮助干燥至(Savent Rotovac)0.1-0.5毫升。2.5清洗PAH的提取物被分割两个步骤清洁。第一步,玻璃管(30cm2.5cm )充满了被甲醇:水( 85:15 )润湿后的葡聚糖LH-20。集中样品,然后加入横栏,洗去正己烷。该淋洗液转入分离漏斗,极可溶性的化合物被丢弃。剩下的混合物(正己烷)都集中在一个旋转蒸气机蒸至5毫升。 第二步的程序使用吸附液相色谱。玻璃管(30cm0.8cm)充满了由异丙醇润湿的葡聚糖LH-20。集中加入5ml的样本,然后用100ml的异丙醇清洗。首先24ml的淋洗液体被丢弃,其余PAH多在以后的3环。该淋洗液集中在一个旋转蒸气机上,然后在真空干燥器上干燥(Grimmer 1982年;Luks-Betlej 1997年)。这是重新溶解在甲醇和二氯甲烷并由GC分析。2.6量化美国环境保护署(EPA)有固定的16PAH主要污染物(EPA 1997年)。共计11种,它们是:菲(Phen),蒽(Anth),荧蒽(Flan),芘(Pyr),Chrysene (Chry),苯并蒽(BaA) ,苯并荧蒽(B k F),苯并芘(BaP),苯并苝(BghiP),Indeno(1,2,3-c,d)和芘(IP),在当前的研究中进行量化。定性和定量测定PAH使用了气相色(NuconModel5765 )、使用FID法和分裂喷油系统。融合毛细管柱(30 m,ID0.53和0.43的薄膜厚度)涂层与固定相使用DBS。该注射液的温度是2000oC,在130oC至2900oC在变化,变化率40oC/min,检测温度为2500oC。氮是用来作为载气,流速为2ml/min。在这样的分析中有5点校准需要做的。分析方法用来检查精确度和准确性。方法的空白和重复进行分析了20个样本。重复分析的误差在10%至15%。3.结果与讨论3.1可吸入颗粒物浓度在考察的三个地点中,可吸入颗粒物平均浓度在1998年为552.8304.0,658.5268.2和454.8182.1/ m3,而2004年分别为270.9 181.4,171.2126.9和122.8 63.5/ m3。CPCB的7个监测站也监测了新德里的空气质量。其中4个站(Ashok Vihar,Sirifort, Janakpuri and Nizamuddin)属于一类住宅区, 2个(Shahadara和Shahzadabagh)工业区,另一个(ITO)位于交通的交汇区(Mohan 2007年)。2004年,监测站测得的PM10 的平均浓度为127-228 /m3。这些与本研究2004年的数据值基本类似。不过,CPCB监测地的PM10的数据在1998年是无法使用。空气中PM10的平均浓度的变化依赖于不同的环境背景。PM10的最高浓度可吸入颗粒物发生在Daryaganj的1998年期间,来源是大量的车辆排放,主要是柴油驱动车排放的废气。据估计,在城市地区(Danielis and Chiabai 1998年)80%以上的总悬浮颗粒物是由交通带来的。特别是,柴油废气可能多出达30 的污染细颗粒(PM2.5,U.S. EPA 2002年)。此外,Daryaganj是一个非常拥挤的地区,周围的高大建筑物分散的污染物是非常少。而在Moti Nagar,这种高浓度的可吸入颗粒物主要是工业排放,以及车辆排放。因为柴油被消耗在工业生产过程和因为频繁的停电而采用的柴油发电机组上。JNU观测站点由于在现场附近没有突出的污染来源,因此污染浓度较低。后来说使用天然气的数据与原来未使用天然气的数据对比显示,PM10减少51% -74%。天然气作为汽车燃料组成,在决定PM10的排放量中发挥着重要作用。观察PM10减少,可以解释在公共交通燃料更换时可吸入颗粒物水平变化的问题(Johnson 等人 1994年)。在城市地区使用替代燃料,如压缩天然气(CNG汽车),以取代柴油被认为是能有效减少排放的措施(Coburn等人1998年)。根据EPA的实况报道,在2002年,与传统柴油相比,天然气的使用减少了90%的颗粒物。天然气的主要组成部分是甲烷,它具有低的分子量(只有16 )和简单的结构(一碳原子和四个氢原子组成的一种分子)。而柴油和汽油在相比之下就复杂的多,柴油燃料构成多是分子量很大的分子,其中包括芳烃和大量的不饱和化合物。碳氢的比例低,有一种倾向是燃烧前热解和形成烟雾体。含碳量原子更有可能出现在组成部分未燃的和部分氧化的碳氢化合物,所以在柴油车尾气中包含更为复杂和分子量更大的分子,而天然气就不会。因此,柴油增加了PM10的排放量(Johnson 1994年)。在Daryaganj站点,车辆的废气排放是主要的来源,运输燃料切换到天然气导致PM10显着减少74 。而在MotiNagar观察减少最低之间的研究地点。正如刚才所说,在MotiNagar观察站柴油是另外消耗在工业生产过程,以及柴油发电机组运行过程中。柴油消费在这一领域可能会有所增加,由于以后的天然气使用,工业化的快速增长和电力危机相对减轻,因此Motinagar观察站的污染物将减少。3.2PAH的浓度每月检测PAH在三个不同的采样点平均浓度,在表3给出了1998年的水平,表4给出了2004年的水平。2004的记录的PAH平均浓度与1998年相比,与记录的年期间。1998年,在MotiNagar,Daryaganj和JNU采样地点分别为以一年为期的平均总PAH的浓度被认为201.96113.91 , 174.46 113.53和66.4135.72 /m3,而2004年值为74.8538.22 , 72.7835.75和21.08 9.64 / m3。这两年来的最高值是在工业现场,其次,在MotiNagar是商业用地,Daryaganj是体制方面,JNU是高浓度的PAH。在MotiNagar可能是由于车辆和工业废气排放综合效果,在达拉甘吉主要是车辆排放的PAH。PAH从今年1998年至2004年减少了63%-68%。政府想要减少PAH的浓度,可考虑到刚才所采取的主动行动,其中包括在公共交通工具使用天然气措施的实施。尽管巴士数量占新德里机动车辆总数量 0.3(Kavouras等人1999年)。在所有地点的IP与 Bghip + IP的比例是 0.3,这两年的数据都清楚地揭示了柴油机与相关污染物的相关。不过在2004年比例已下降20-32 %,因为强调了重型汽车的燃料由柴油转化为CNG的重要性。B(a)P与B(a)P+Chry的比率也用来评估车辆排放的废气。汽油机发动机的B(a)P与B(a)P+Chry的比例是0.49,而柴油发动机是0.73(Khalili等人1995年)。1998年在同一个研究领域中,这比率范围在0.55-0.67之间,这是98年的柴油机和汽油机混合排放量。2004年的这个比例是在范围0.33-0.50 ,而这类似于汽油的排放量。为了进一步了解这三个地点潜在的PAH的来源,Phen与Phen+Anth的比率被用作识别,这是碳氢化合物中最具代表性的物质。Sicre等人(1987年)指出,原油这个比率通常高于0.70。而Khalili等人(1995年)发现柴油排放的废气的Phen与Phen+Anth 的比率是0.65,而汽油燃烧是0.50,煤燃烧是0.76。在本研究中,1998年的Phen与Phen+Anth比例在采样地点范围是0.58-0.65 ,这就显示了柴油车辆废气排放是污染的主要来源。而对于2004年的这个比例,被发现在范围0.47-0.63,从而揭示了汽油发动机的排放是主要污染来源。4.结论PM10的数据显示,居住区周围的PM10所指定的可吸入颗粒物含量超过了印度中央污染控制委员会确定的60环境空气质量标准。对比分析使用天然气前后可吸入颗粒物数据,在不同地点使用天然气PM10减少51-74%,而PAH的值减少了58%-68%。政府在过去十年中所采取的各种法律和技术举措,对控制新德里颗粒物和相关PAH,以及日益恶化的空气质量是十分有效的。5.鸣谢作者非常感谢在工作期间大学教育资助委员会(教资会)提供的财政支持。附录B 外文文献Impact of CNG implementation on PAHs concentration in the ambient air of Delhi: A comparative assessment of pre- and post-CNG scenarioAbstract: The use of alternative fuel is considered to be an effective measure to improve the urban air quality. Concerned over deteriorating air quality in Delhi, the Delhi government initiated different measures including stringent emission norms, improved fuel quality and above all introduction of cleaner fuel-CNG in public transport system. The entire city bus fleet was converted to CNG mode by 2002. The present study reports the comparative assessment of the status of air quality with respect to PM10 and PAH before and after the introduction of CNG in public transport system in Delhi. The study has been carried out for two different time periods: first in the year 1998 and second in the year 2004. Following the total conversion of public transport system to CNG in 2002, Post-CNG data indicate a sharp reduction of 51-74% in the PM10 concentration and 58-68% in the TPAH concentration as compared to the Pre-CNG data.Keywords: CNG .Delhi .PAH. PM10.1. IntroductionAir pollution in urban areas gives rise to direct and uncontrolled exposure of large populations to the high concentrations of toxic substances. Among these toxic substances PAHs have grasped much attention due to their known carcinogenic and mutagenic potential. PAH and their derivatives are the major culprits for causing cancer in urban areas (Doll and Peto, 1981; Speizer, 1986; Westerholm et al., 1988). PAHs are semi-volatile in nature and are thus present both in gaseous and particulate phases of air (Gundel et al., 1995). The most hazardous of these ubiquitous compounds have been found to be associated with particulate matter (PM) (Feilberg, 2000; Lighty et al., 2000). Main source of PAHs in the urban environment is incomplete combustion of organic substances. Vehicular traffic (mainly diesel-powered) is considered to be the most significant contributor to the atmospheric PAH load (Wingfors et al., 2001). The toxicity of diesel exhaust is well documented in the literature: diesel exhaust is currently classified by the International Agency for Research on Cancer (IARC) as probably carcinogenic to humans (2A group) and is the major source of fine and ultrafine PM in urban air. These particles have a high probability of deposition deep into the respiratory tract and can initiate lung tumor (Sidhu et al. 2001) and cause respiratory diseases (Rantanen et al. 1993). PAH concentration in the air, surrounding large cities remains high due to increase in the number of automobiles, which emit large amount of particulate matter.Delhi, the capital city of India, is one of the 10 most polluted cities of the world (Aneja et al., 2001). Major air quality concern in India is suspended particulate matter (SPM) and respirable suspended particulate matter (RSPM, Bhanarkar et al., 2002). Respirable Particulate Matter (PM10) in the air has been associated with health impairment and increase in mortality, morbidity and asthma (Dockery and Pope, 1994). The severity of the problem is reflected in the mortality and other epidemiological data as calculated and reported by various studies. It has been estimated that in Delhi alone hundreds of thousands of cases of respiratory illness are associated with atmospheric pollution each year (Faiz and Sturmn, 2000). Vehicular pollution, both diesel and petrol induced, continues to be the major problem for Delhi, as it has the highest number of automobiles in the country (Goyal and Sidhartha, 2003). Presently, Delhi is having 4.2 million vehicles running on its roads as compared to 3.2 million in1998.Delhi state government has employed several policy instruments to control & abate the vehicular pollution in urban centers. Various measures taken during the period 1998-2004 can be summarized as (1) phasing out/ban on old commercial/transport vehicles (15 years; in 1998), (2) Registration of only EURO II three-wheelers and diesel taxis (in 1999), (3) diesel sulphur reduced to 0.25% (in 1999) and then to 0.05% (in 2000), (4) the three coal based power plants switched over to beneflciated coal (in 2000), (5) closure of hazardous industries (in 2001) (6) Mass Rapid Transit System, Delhi Metro became operational (in 2003-04; Mohan and Kandya ,2007) (7) In April 2001, a major decision of the supreme court of India made CNG a mandatory fuel in public transportation of Delhi. Following the landmark decision, there was a rapid change over in public transport system. In July 2001, total numbers of CNG vehicles were around 32,884 (CPCB, 2003), which rose to 57,240 and 92246 in March 2002 and April 2005 respectively.2. Material and methods2.1Study areaDelhi is situated 160 Km south of the Himalayas (2802117 to 28053 latitude and 7602037 to 7702037longitude) at an altitude of between 213.3 and 305.4m above mean sea level. It is surrounded by the Thar Desert of Rajasthan in its west and hot plains of central India in its south. The city extends over 1,483 Km2 with a present population of about 13 million compared to about 3.5 million in 1970. The climate of Delhi is mainly influenced by the prevalence of continental air during the major part of the year. Extreme dryness with an intense hot summers and cold winters is the main characteristic of the climate of Delhi. The normal rainfall is 611.8 mm. Except during the monsoon months, winds are predominantly from westerly (W) or north-westerly (NW) direction. Easterly and South Easterly winds are more common in the monsoon months. It has been well recognized that in Delhi atmosphere, SPM is a major air pollutant originating mainly from vehicular and industrial emission besides numerous domestic coal burning units and three thermal power plants with the combined capacity of 1312 megawatt operating in different parts of the city.2.2SamplingThree different sampling sites viz. Daryaganj (DG), MotiNagar (MN) and JNU were selected for the study. Selection of these sites was based on local activities with varying traffic density and industrial activities. Sampling was done simultaneously at all the three sites on monthly basis for the year 1998 (Pre-CNG period) and 2004 (Post-CNG period). Samples were collected for about 60-70 h duration at the three locations using an eight-stage Andersen impactor (Andersen Instruments Inc., USA). The impactor has 50% cut-off aerodynamic diameters of 10, 9, 5.8, 4.7, 3.3, 2.1, 1.1, 0.65 wm for stages 1-8, respectively, and collects all particles smaller than 0.43 wm on an after filter. Flow rate was maintained at 28.1 t/m. Low volume impactor sampling is preferred to minimize volatilization losses of semi-volatile PAH species(Venkataraman et al. ,1994) which occur during hi volume PM10 sampling on glass fiber filters (Coutant et al., 1988). Impactor have near 100% collection efficiency for compounds of vapor pressures lower than 10-9 atm (Zhang and McMurry ,1991) which includes the PAH species reported here. Glass fiber filters (Schleicher and Schull, Germany) were used as collection substrate and were kept in desiccators after sampling. The PAH concentrations measured on all stages (1-8 and after-filter) were added to obtain the total PAH concentrations is PM10 。Sampling periods and average particle concentration are given in Table 1.2.3ChemicalsStandard mixture containing 16 PAH (16 compounds specified in EPA method 610) was procured from Supelco (Bellefonte, PA, USA). All solvents (toluene, n-hexane, methanol, isopropanol, methylene chloride etc.) used for sample processing and analysis, were of analytical grade.2.4ExtractionFilter papers were subjected to ultrasonic extraction and were analysed using Gas Chromatography and FID detector. The filter papers were cut into thin strips and were extracted twice in 50 ml of toluene for 15 min by ultrasonic agitation (Misonix Ultrasonic Processor-XL) with a frequency of 20 KHz in a water bath (10-150C). Both the extracts were substantially mixed and filtered and then concentrated by Roto-vapour (Buchi Rotova pour, Switzerland) to 5 ml. The concentrate was dried with the help of cold vacuum drier (Savent Rotovac) to 0.1-0.5 ml.2.5Clean-upPAHs in the extracts were fractionated by a two step clean-up method. For the first step a glass column (302.5 cm) was packed with Sephadex LH-20 wetted with Methanol: Water (85:15). Concentrated dried sample was added into the column and was eluted with n-hexane. The eluent was transferred into a separation funnel and the polar soluble compounds were discarded. The supernatant liquid (n-hexane) was concentrated in a roto-vapour to 5 ml.For the second step of the procedure, adsorption liquid chromatography was used. A glass column (300.8cm) was packed with Sephadex LH20 wetted with Isopropanol. The concentrated 5 ml sample was added and then eluted with 100 ml of Isopropanol. First 24 ml of the eluent were discarded and the rest contained PAHs with more than three rings. The eluent was concentrated in a roto-vapour and then dried in a vacuum drier (Grimmer et al., 1982; Luks-Betlej, 1997). It was re-dissolved in methanol: methylene chloride and analyzed by GC.2.6QuantificationUS Environmental Protection Agency (EPA) has fixed 16 PAHs as priority pollutants (US EPA, 1997). Total 11 PAH species viz. Phenanthrene (Phen), Anthracene(Anth),Fluoranthene(Flan),Pyrene(Pyr),Chrysene(Chry),Benzo(a)anthracene(BaA),Benzo(k)fluoranthene(BkF),Benzo(a)fluoranthene(BbF),Benzo(a)pyrene (BaP),Benzo(g,h,i)perylene (BghiP), and Indeno (1, 2, 3-c, d) pyrene(IP) were quantified in the present study.Qualitative and quantitative determination of PAHs was done by Gas chromatograph (Nucon Model5765) using a FID and a split less injection system. A Fused capillary column (30m, 0.53id and 0.43 wm film thickness) coated with stationary phase DBS was used. The Injection temperature was 2000C and ramp was given at 130 to 2900C at the rate of 40C/min, detector temperature was 2500C. Nitrogen was used as a carrier gas with a flow rate of 2 ml/min.Five-point calibration was done for the qualification. Analytical method was checked for the precision and accuracy. Method blanks and duplicates were analyzed with each lot of 20 samples. Replicate analyses gave an error between10% to15 %.3Results and discussion 3.1PM10 concentration Average PM10 concentrations were found to be 552.8304.0; 658.5268.2 and 454.8182.1/m3 for the year 1998 while for the year 2004 values were 270.9181.4, 171.2126.9, and 122.863.5 / m3 at Moti Nagar (MN), Daryaganj (DG) and JUN sites respectively. CPCB also monitors air quality of Delhi at seven monitoring stations. Among seven stations four stations (Ashok Vihar, Sirifort, Janakpuri and Nizamuddin) fall under the category of residential area, two (Shahadara and Shahzadabagh) under industrial and one (ITO) under traffic intersection area (Mohan et al, 2007). Average PM10 concentrations for the year 2004 ranged from 127-228 / m3 at CPCB monitored sites. These values were well comparable with the present studys data for the year 2004. However, PM10 data at the CPCB monitored sites for the year 1998 was not available.Spatial variation in PM10 level depends on the difference in background activities. Highest values of PM10 at Daryaganj during 1998 could be attributed to vehicular, mainly diesel-driven, emissions. It has been estimated that traffic may be responsible for more than 80% of total suspended PM in urban areas (Danielis and Chiabai, 1998). In particular, diesel emissions may account for up to 30% of pollution by fine particles (PM2.5; U.S. EPA, 2002). Moreover, at Daryaganj, being a very congested area with tall surrounding buildings, dispersion of pollutants is very less. While, at Moti Nagar mainly industrial emission as well as vehicles could be the source of such a high concentration of PM10. Since, diesel is consumed by industrial processes and diesel generator sets because of frequent power failures. JNU site showed lowest PM concentrations as there is no prominent source of pollution in the vicinity. PM10 data for the Post-CNG period showed 51%-74% reduction as compared to the Pre-CNG PM10 values. As fuel composition plays an important role in determining PM emissions, observed reduction in the PM10 level could be explained by the changeover of fuel in the public transport (Johnson et al. 1994). The use of alternative fuels, such as compressed natural gas (CNG), in place of diesel oil is considered to reduce emission of PM in urban areas (Coburn et al. 1998).According to EPA fact sheet 2002; natural gas produces 90% less particulate matter as compared to conventional diesel.The major component of natural gas is methane that has the lowest molecular weight (only 16) and simplest structure (one carbon atom and four hydrogen atoms in a molecule) as compared to diesel and gasoline. In contrast, diesel fuel consists of a blend of complex, heavy molecules that include aromatics and a wide range of unsaturated compounds. The carbon to hydrogen ratio is low, and there is a tendency under pyrolysis and combustion to form smoke precursors. Unburned carbon atoms are more likely to occur, and the composition of the unburned and partially oxidized hydrocarbons in the diesel exhaust are much more complex and extend over a larger range of molecular size than those for Natural Gas and, consequently, increase the PM emissions (Johnson et al., 1994).Since vehicular emission is the main PM contributor at Daryaganj site transport fuel switchover to CNG lead to marked reduction of 74% in PM10 level while at MotiNagar the observed reduction was lowest among the studied sites. As earlier mentioned, at MotiNagar site diesel is additionally consumed in industrial processes as well as in diesel-run generator sets. Diesel consumption in this sector might have increased in the Post-CNG period due to rapid growth of industrialization and power crisis consequently comparatively less reduction in PM levels at MotiNagar site.3.2PAH concentrationMonthly average concentrations of individual PAH at three different sampling sites are given in Table 3 for the year 1998 and in Table 4 for the year 2004. Average concentration of total PAH found during 1998 was compared with that of recorded during 2004. Average total PAH concentration for a period of one year were found to be 201.96113.91, 174.46113.53 and 66.4135.72/ m3 at MotiNagar , Daryaganj and JNU sampling sites respectively for the year 1998, while during the year 2004 values were74.8538.22, 72.7835.75 and 21.089.64.For both the
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。