一题多解11---导数--极值点偏移_第1页
一题多解11---导数--极值点偏移_第2页
一题多解11---导数--极值点偏移_第3页
一题多解11---导数--极值点偏移_第4页
一题多解11---导数--极值点偏移_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、已知函数(I)讨论的单调性;(II)设,证明:当时,;(III)若函数的图像与轴交于两点,线段中点的横坐标为,证明:命题说明:一、命题来源:个人原创二、主要考查以下几方面内容:(1)考查求导公式(包括形如的复合函数求导)及导数运算法则;(2)考查对数的运算性质;(3)导数法判断函数的单调性;(4)考查用构造函数的方法证明不等式;(5)考查分类讨论、数形结合、转化划归思想;三、难度:属于理科导数压轴题,难;四、解题方法:()解:的定义域为, (解决函数问题,定义域优先的原则) (常见函数的导数公式及导数的四则运算)()若则,所以在单调递增;()若则由得,当时,当时,(导数法研究函数单调性,涉及分

2、类讨论的思想)单调递增,在单调递减.综上,当时,在单调递增; 当时,单调递增,在单调递减.归纳小结:本小问属导数中常规问题,易错点有二:易错点一是忽略函数的定义域,易错点二是分类讨论的分类标准的选取。(II)分析:函数、导数综合问题中的不等式的证明,主要是构造函数的思想,利用所构造的函数的最值,来完成不等式的证明。形如“”的不等式叫二元的不等式,二元不等式的证明主要采用“主元法”。解析:方法一:构建以为主元的函数设函数 (构造函数体现划归的思想)则,(这是本题的难点,估计很多学生不知要把朝何方象化简,由于要利用导数法求最值,所以应朝有利于求导的方向化简,另外考试大纲中明确对复合函数求导,只需掌

3、握型。) (型的复合函数求导)当.故当, 方法二:构建以为主元的函数设函数,则由,解得当时,而,所以故当,归纳小结:无论是方法一还是方法二都采用了构造函数法证明不等式,解题中都体现了将不等式证明问题划归为函数最值的划归思想。()分析:判断的正负,由()中单调性,可知,即确定与的大小关系,又可等效成判断与的大小关系,根据()中不等式可确定与的大小关系,结合()中单调性,问题迎刃而解。解:由(I)可得,当的图像与x轴至多有一个交点,故,从而的最大值为不妨设 (结合图象分析更方便)由(II)得 (注意前后两问的衔接)又在单调递减所以 (利用函数性质脱掉函数符号)由(I)知, 归纳小结:本小问解决主要

4、是建立在第()(II)问的基础之上的,分析问题中注意数形结合,解题时要有“回头看”的意识。完成本问很难说学生究竟用了什么方法,需要学生要对所学过的知识、方法要做到完全融会贯通,达到以“无法胜有法,以无招胜有招的境界,才有机会解决这个问题,是考查学生综合能力的体现。五、试题蕴含的数学思想方法:数学思想:(1)分类讨论思想 (2)转化划归思想 (3)数形结合思想数学方法 :(1)导数法确定函数单调性 (2)构造函数法证明不等式 六、题目的几何背景:任何抽象的代数形式背后,都有其深刻的几何背景,本题的几何背景无论是函数还是其实都是先减后增的单峰函数,利用图象的对称平移变化,就能出现在的指定的某一范围

5、下,两函数图象的端点处的函数值相同,图象有高低,也就产生了我们的试题中的第(II)问。由于为单峰函数,图像关于直线(为函数的极值点)不对称,导致直线(或轴)与曲线相交时,交点到直线的距离不等,进而出现重点在的右侧,也就出现试题中的第(III)问。七、问题变式与拓展对于一个试题的变式无外乎从这两个方面入手,对其加以变式,一对题目的条件加以变式、二对题目的结论加以变式。基于以上想法,我主要从以下几个方面对试题加以变式。问题变式一:已知函数(III)若函数的图像与直线交于两点,线段中点的横坐标为,证明:编题意图:将特殊直线(或轴)变成一般的直线,体现从特殊到一般。问题变式二:已知函数,(III)若函数的图像与轴交于A,B两点,线段AB中点的横坐标为,证明:编题意图:要解决的问题不变,改编的是原函数,通过添加参数来改编试题,改变试题的难度。问题变式三:已知函数(1)求的单调区间;(2)求证:(3)设图象与直线的两交点分别为,中点横坐标为证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论