下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精品资源人教B版选修二正态分布教案教学目标(1)通过实际问题,借助直观(如实际问题的直方图),了解什么是正态分布曲线和正态分布;(2)认识正态分布曲线的特点及曲线所表示的意义;(3)会查标准正态分布表, 求满足标准正态分布的随机变量X在某一个范围内的概率.教学重点,难点(1)认识正态分布曲线的特点及曲线所表示的意义;(2)求满足标准正态分布的随机变量X在某一个范围内的概率.教学过程一.问题情境1.复习频率分布直方图、频率分布折线图的意义、作法;b回顾曲边梯形的面积 S = f f(x)dx的意义. a第一步 对数据分组(取组距 d = 4);第二步 列出频数(或频率)分布表;J第三步 作出频率
2、分布直方图,如图2-6-2 .颠率赢J7k U IIIIbrtR三.5。1S5657(J175I8<) 修品2m困? 6 -3.学生活动为了研究身高的分布,可以先根据这些数据作出频率分布直方图.2.从某中学男生中随机地选出84名,测量其身高,数据如下(单位cm)164 175 170 163 168161 177 173 165 181 155178164 161174 177 175168 170 169 174 164 176181181 167 178 168 169159 174 167 171 176 172174159 180 154 173 170171 174 172 1
3、71 185 164172163 167 168 170 174172 169 182 167 165 172171185 157 174 164 168173 166 172 161 178 162172179 161160 175 169上述数据的分布有怎样的特点?169 175 161 155 156 182182欢迎下载精品资源® 2-6-2由图2-6-2可以看出,上述数据的分 布呈“中间高,两边底,左、右大致 对称”的特点.可以设想,若数据无限增多且组距 无限缩小,那么频率直方图的顶边 无限缩小乃至形成一条光滑的曲线, 我们将此曲线称为概率密度曲线. 再观察此概率密度曲线的
4、特征.三.建构数学1_721 .正态密度曲线:函数 P(x) = / e 2a , x w R的图象为正态密度曲线,其中M和仃、2 二:为参数(c > 0 , NwR).不同的N和仃对应着不同的正态密度曲线.2 .正态密度曲线图象的性质特征:(1)当x<R时,曲线上升;当 x>N时,曲线下降;当曲线向左右两边无限延伸时,以x轴为渐进线;(2)正态曲线关于直线 x = N对称;(3)仃越大,正态曲线越扁平;仃越小,正态曲线越尖陡;(4)在正态曲线下方和 x轴上方范围内的区域面积为1.3.正态分布:若X是一个随机变量,对任给区间(a,b, P(a <x< b)恰好是正
5、态密度曲线下方和X轴上(a, b上方所围成的图形的面积,我们就称随机变量X服从参数为N和。2的正态分布,简记为 XN(N,。2).4.正态总体在三个特殊区间内取得的概率值:具体地,如图所示,随机变量 X取值(1)落在区间(R 仃,N+仃)上的概率约为68.3% ,即 P(N 仃 <X MN +仃)=0.683;(2)落在区间(N 2仃,卜+2仃)上的概率约为95.4%,即P(N2。<X 七h十2仃)=0.954;(3)落在区间(N3仃,N+3仃)上的概率约为99.7%,即欢迎下载精品资源P(N 3仃 <X EN 十3仃)=0.997 .2.5 . 3。原则: 服从于正态分布
6、N (匕仃2)的随机变量X只取(N3ct,N+3g)之间的值,并简称为3。原则.6 .标准正态分布:事实上,N就是随机变量X的均值,仃2就是随机变量X的方差,它们分别反映X取值的平均大小和稳定程度.我们将正态分布 N(0,1)称为标准正态分布.通过查标准正态分布表(见附表1)可以确定服从标准正态分布的随机变量的有关概率.7 .非标准正态分布转化为标准正态分布:X非标准正态分布 X|_N(巴仃2)可通过z =转化为标准正态分布 zLI N(0,1).a四.数学运用1.例题:例1. 一台机床生产一种尺寸为 10mm的零件,现在从中抽测 10个,它们的尺寸分别如 下(单位:mm): 10.2, 10
7、.1 , 10, 9.8, 9.9, 10.3, 9.7, 10, 9.9, 10.1,如果机床生产 零件的尺寸Y服从正态分布,求正态分布的概率密度函数式.1解:由题意得 N = (10.2+10.1 +10+9.8+9.9+10.3 +9.7+10 + 9.9 + 10.1)=10 ,1021_2_2_2_2_2_2;=(10.2 -10)2 - (10.1 -10)2 - (10-10)2 (9.8-10)2 (9.9 -10)2 (10.3-10)210+(9.乙 120 广(10 2 10)6 9.29 +10) (10.1,10)100.3=0.03.所以Y的概率密度函数为 P(x)
8、=1050(x/0)2=e 3 ,xw R.6 二欢迎下载例2.若随机变量Z N(0,1),查标准正态分布表,求:(1) P(Z <1.52); P(Z>1.52);(3) P(0.57 <x <2.3);(4) P(Z <-1.49).解:(1) P(Z M1.52) =0.9357 . P(Z >1.52) =1 -P(Z <1.52) =1 -0.9357 =0.0643 .(3) P(0.57 <x <2.3) =P(Z <2.3) -P(Z <0.57) =0.9893 0.7157 =0.2736 ;(4)P(Z &
9、lt; -1.49) = P(Z _1.49)=1 -P(Z <1.49)-1 -0.9319= 0.0681 .例3.在某次数学考试中,考生的成绩X服从一个正态分布,即X N(90,100).试求考试成绩X位于区间(70,110)上的概率是多少?解:法一(将非标准正态分布转化为标准正态分布):70 -90 X -90 110 -90P(70 :二 X < 110) = P(:二:二)=P(-2 Z :二 2) = P(Z < 2) - P(Z < -2)101010= P(Z W2) I 1P Z M 2) = P 4 M 2> 1 2 0.9772= 1 0. 9 54 4 0.法二(3仃原则):因为 X N(90,100),所以 9 =90,仃=J100=10.由于正态变量在区间(N -2仃,R+2。)内取值的概率是 0.954 ,而该正态分布N-2b =90-2父10=70,卜+2。=90+2父10=110,所以考试成绩 X位于区间(70,11
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小红书内容共创培训-电商市场及媒介策略部 鹅
- 安全教育知识讲座
- 医疗器械店产品售后指导不力整改报告
- 档案管理中级职称水平能力测试题库及答案
- 2026四川省引大济岷水资源开发有限公司第一批次招聘27人备考题库完整答案详解
- 2026中国农业大学人才招聘备考题库附答案详解(典型题)
- 2026广西贵港市电子商务促进中心招募就业见习人员2人备考题库及完整答案详解1套
- 2026天津能源投资集团有限公司社会招聘创新服务中心副主任的1人备考题库附参考答案详解ab卷
- 2026年甘肃省兰州市城关区文璟学校春季学期教师招聘备考题库含答案详解(综合卷)
- 2026年港口码头理货员岗位知识考试题库含答案
- 学堂在线 雨课堂 学堂云 积极心理学(下)自强不息篇 章节测试答案
- 喜家德营销方案
- 原发性纤毛运动障碍综合征教学演示课件
- 安全开发生命周期(SDLC)的实施
- 月台施工方案
- 高边坡工程施工安全总体风险评估报告
- 医院内静脉血栓栓塞症防治质量评价与管理指南(2022版)
- 白血病医学知识培训
- 圆柱弹簧通用作业指导书
- 热力学统计物理第三章
- 家庭装修简易合同范本模板六篇
评论
0/150
提交评论