2020-2021学年江苏省扬州市中考数学模拟试卷(二)及答案解析_第1页
2020-2021学年江苏省扬州市中考数学模拟试卷(二)及答案解析_第2页
2020-2021学年江苏省扬州市中考数学模拟试卷(二)及答案解析_第3页
2020-2021学年江苏省扬州市中考数学模拟试卷(二)及答案解析_第4页
2020-2021学年江苏省扬州市中考数学模拟试卷(二)及答案解析_第5页
免费预览已结束,剩余36页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、江苏省 中考数学模拟试卷(二)一、选择题1. 4的相反数是()a 3cl 3 c 4 c $A石B 7 CN D万2 .据有关资料,当前我国的道路交通安全形势十分严峻,去年我国交通事故的死亡人数约为10.4万人,居世界第一,这个数用科学记数法表示是()A. 1.04X04 B. 1.04 M05 C, 1.04 >106 D. 10.4X043 .点P (1, - 2)关于y轴对称的点的坐标是()A. ( 1, 2)B. (1, 2) C ( 1, 2)D. (-2, 1)4 .不等式组3的最小整数解为()8-2 xA. - 1 B. 0 C. 1D. 45 .如图,。的半径为5,弦AB

2、的长为8, M是弦AB上的动点,则线段 OM长的最小值为()A. 2 B. 3 C. 4 D. 56 .把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()一口区/:EiL右折存下方折沿虚统翦开7 .如图,?ABCD的周长为16cm, AC与BD相交于点O, 0岂AC交AD于E,则4DCE的周长为()A. 4cm B. 6cm C. 8cm D. 10cmtan,AC=6,贝U AB的长为(8.如图, ABC中,/ A=30°,A.- B. ,; C. 5 D.9 .已知实数x满足x2+W+工4=0,那么x上的值是()A. 1 或-2 B. 1 或 2 C. 1 D. -

3、210 .如图是三个反比例函数 y=-, y=y-, y=-jp在x轴上方的图象,由此观察得到k, k2, k3的大小关系为(0工A.ki>k2>k3B.k3>k2>kiC.k2>k3>kiD.k>ki>k211.我们知道,溶液的酸碱度由PH确定.当PH>7时,溶液呈碱性;当PH<7时, 溶液呈酸性.若将给定的HCl溶液加水稀释,那么在下列图象中,能反映HCl溶液的 PH与所加水的体积(V)的变化关系的是()| -0|V012.在矩形 ABCD中,AB=3, AD=4,则PE+PF勺值为()APD苒BC125A. 5 B. 2 C.

4、. D. 11y"P是AD上的动点,PE± AC于E, PF± BD于F,、填空:本大题共8小题;每小题4分,共32分.把答案填写在题中横线上.13.(4分)函数yq为中,自变量x的取值范围是14. (4分)已知二次函数:(1)图象不经过第三象限;(2)图象经过点(2, -5),请你写出一个同时满足(1)和(2)的函数关系式: .15. (4分)某校去年对实验器材的投资为 2万元,预计今明两年的投资总额为 8万 元,若设该校这两年在实验器材投资上的平均增长率为x,则可列方程: .16. (4分)如图所示,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形上的一个角

5、沿折痕AE翻折上去,使AB与AD边上的AF重合,则四边形ABEFM是一个 大的正方形,他判定的方法是.ms E C17. (4分)如图是2003年11月份的日历,现用一矩形在日历中任意框出4个数请用一个等式表示,& b、c、d之间的关系.日三四五六1234567S9一111213151(517IX 192021n23242526272S29如18. (4分)为了测量一个圆铁环的半径,某同学用了如下方法,将铁环平放在水平桌面上,用有一个角为30。的直角三角板和刻度尺按如图所示的方法得到相关数据,进而求出铁环半径,若测得 PA=5cm,则铁环的半径是 cm.19. (4分)正方形网格中,小

6、格的顶点叫做格点.小华按下列要求作图:在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上; 连接三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了 RtAABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个C:用- iii1"1 / :/,IIiii1j. 1 S!I.j /二二,/;4ii- / NI11!2 -网格中的直角三角形互不全等*£20. (4分)小王同学想利用树影测量校园内的树高.他在某一时刻测得小树高为1.5米时,其影长为1.2米,当他测量教学楼旁的一棵大树的影长时, 因大树靠近教学楼,有一部分

7、影子在墙上.经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高约为 米.三、解答题:(本题共8个小题,共82分)21. (8分)计算: sin60 + (一入厉)0辔22. (8分)如图所示,在菱形 ABCD中,点E, F分别在CD, BC上,且CE=CF求证:AE=AF23. (8分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数 1800 510 250 210 150 120人数113532(1)求这15位营销人员该月销售量的平均数、中位数和众数;(2)假设销售负责人把每位营销员的月销售额定为320件,你认为

8、是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.24. (10分)已知关于x的一元二次方程aX2+x- a=0 (aw0).(1)求证:对于任意非零实数a,该方程包有两个异号的实数根;(2)设X1、X2是该方程的两个根,若 区|+|刈=4,求a的值.25. (10分)某学习小组在探索 客内角都相等的圆内接多边形是否为正多边形 ”时, 进行如下讨论:甲同学:这种多边形不一定是正多边形,如圆内接矩形.乙同学:我发现边数是6时,它也不一定是正多边形,如图1, ZXABC是正三角形,AD=BE=CF,证明六边形ADBECF勺各内角相等,但它未必是正六边形.内同学:我能证明,边数是

9、 5时,它是正多边形,我想,边数是7时,它可能也是正多边形.(1)请你说明乙同学构造的六边形各内角相等;(2)请你证明,各内角都相等的圆内接七边形 ABCDEFG如图2)是正七边形;(不必写已知,求证)(3)根据以上探索过程,提出你的猜想.(不必证明)26. (12分)某中学为筹备校庆活动,准备印制一批校庆纪念册.该纪念册每册需要10张8K大小的纸,其中4张为彩页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页 300元/张,黑白页50元/张;印刷费与印数的关系见下表.印数a (单位:千册)1&a<55<a< 10彩色(单

10、位:元/张)2.22.0黑白(单位:元/张)0.70.6(1)印制这批纪念册的制版费为 元;(2)若印制2千册,则共需多少费用?(3)如果该校希望印数至少为 4千册,总费用至多为60000元,求印数的取值范围.(精确到0.01千册)27. (12分)如图,平面直角坐标系中,四边形 OABC为矩形,点A、B的坐标分别为(6, 0), (6, 8).动点M、N分别从O、B同时出发,以每秒1个单位的速度运 动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP>± BC, 交AC于P,连接MP.已知动点运动了 x秒.(1) P点的坐标为多少;(用含x的代数式表示)(2

11、)试求 MPA面积的最大值,并求此时x的值;(3)请你探索:当x为何值时, MPA是一个等腰三角形?你发现了几种情况?写 出你的研究成果.沙r y b一I一d M J x28. (14分)已知:如图,点 A在y轴上,OA与x轴交于B、C两点,与y轴交于 点 D (0, 3)和点 E (0, - 1)(1)求经过B、E、C三点的二次函数的解析式;(2)若经过第一、二、三象限的一动直线切。 A于点P (s, t),与x轴交于点M, 连接PA并延长与。A交于点Q,设Q点的纵坐标为y,求y关于t的函数关系式,并 观察图形写出自变量t的取值范围;(3)在(2)的条件下,当y=0时,求切线PM的解析式,并

12、借助函数图象,求出(1)中抛物线在切线PM下方的点的横坐标x的取值范围.参考答案与试题解析一、选择题:本大题共12小题;每小题3分,共36分,在每小题给出的四个选项 中,只有一项是符合题目要求的.1 . 3的相反数是()A 同 B.C. | D. 4【解答】解:根据相反数的定义,得 谭的相反数是看.故选A.2 .据有关资料,当前我国的道路交通安全形势十分严峻,去年我国交通事故的死亡人数约为10.4万人,居世界第一,这个数用科学记数法表示是()A. 1.04X04 B, 1.04 M05 C, 1.04 >106 D. 10.4X04【解答】解:10.4 万=104 000=1.04X10

13、5.故选B.3 .点P (1, - 2)关于y轴对称的点的坐标是()A. ( 1, 2)B. (1, 2) C ( 1, 2) D. (-2, 1)【解答】解:;点P (1, -2)关于y轴对称,点P(1, -2)关于y轴对称的点的坐标是(-1, -2).故选A.4.不等式组"3的最小整数解为()L 8-2iA. - 1 B. 0 C. 1 D. 4【解答】解:化简不等式组得卜及4所以不等式组的解集为-工x04,s-J则符合条件的最小整数解为0.故选B.OM长的5 .如图,。的半径为5,弦AB的长为8, M是弦AB上的动点,则线段最小值为()A. 2B. 3C. 4 D. 5【解答】

14、解:根据垂线段最短知,当 OM,AB时,OM有最小值,此时,由垂径定理知,点 M是AB的中点,连接 OA, AM=;AB=4,由勾股定理知,OM=3.故选:B.6 .把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()-一匚0日,1右折右下方折沿虚帽萼开【解答】解:从折叠的图形中剪去 8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.7 .如图,?ABCD的周长为16cm, AC与BD相交于点O, 0岂AC交AD于E,则4DCE的周长为()3A. 4cm B. 6cm C. 8cm D. 10cm【解答】解::四边形 ABCD为平行四边形, . OA=OC ,.OEl

15、 AC, .AE=EC. ?ABCD的周长为16cm, . CD+AD=8cm DCE 的周长=CD+CE+DE=CD+AD=8cm故选:C.8.如图, ABC中,8 A=30°tan,AC=J3,则AB的长为(A.-BC. 5D- 2【解答】解:作CD±AB于D.在直角三角形ACD中,/ A=30° .CD=AD=3在直角三角形BCD中,tanAB=AD+BD=5故选C.=0,那么告的值是(2 119.已知实数x满足x+W+xq V苴A. 1 或-2 B. - 1 或 2c.i D. - 2【解答】解:V X4fT+=0 w 一盘(x+g +2 (x+§

16、;) - 1=01,.x+-=1 或-2.1-x+=1 无解,x+§=-2.故选D.10.如图是三个反比例函数 y=, y=, y KXki, k2, k3的大小关系为()。JA. ki>k2>k3 B. k3>B>ki C. k2>k3>ki 【解答】解:由图知,y&的图象在第二象限 .ki<0,6>0, k3>0,又当x=1时,有k2< k3, . k3> B>ki.故选B.11.我们知道,溶液的酸碱度由PH确定.当 溶液呈酸性.若将给定的HCl溶液加水稀释,PH与所加水的体积(V)的变化关系的是(匚

17、J JA.B. C01voV3在x轴上方的图象,由此观察得到 XD. k3>ki>k2:,y/, y旦的图象在第一象限,PH>7时,溶液呈碱性;当PH<7时,那么在卜列图象中,能反映HCl溶液的);三7【解答】解:根据题意:若将给定的HCl溶液加水稀释,那么开始PH< 7,随着慢慢加水,溶液的酸性越来越弱,且 PH值逐渐增大.故选C.12.在矩形 ABCD中,AB=3, AD=4, P 是 AD 上的动点,PELAC于 E, PFLBD于 F,则PE+PR!勺值为(125A.优 B. 2 C.不 D. 1 52【解答】解:设AP=x, PD=4- x.v Z EA

18、PW EAP, Z AEP玄 ADC;y PR.AERAADC,故十";PF同理可得4 DFRADAB,故§ = $.+得4 PE+PF5= 3-512.PE+PF-.故选 A.二、填空:本大题共8小题;每小题4分,共32分.把答案填写在题中横线上.13. (4分)函数丫可£ 中,自变量x的取值范围是 x>-2 .【解答】解:根据题意得:x+2> 0,解得x>-2.14. (4分)已知二次函数:(1)图象不经过第三象限;(2)图象经过点(2, -5), 请你写出一个同时满足(1)和(2)的函数关系式: y=x2- 5x+1 (答案不唯一) .【解

19、答】解:此题答案不唯一,如:y=x2-5x+1.15. (4分)某校去年对实验器材的投资为 2万元,预计今明两年的投资总额为 8万 元,若设该校这两年在实验器材投资上的平均增长率为 x,则可列方程: 2 (1+x) +2 (1+x) 2=8 .【解答】解:二.去年对实验器材的投资为 2万元,该校这两年在实验器材投资上的 平均增长率为x,今年的投资总额为2 (1+x);明年的投资总额为2 (1+x) 2;二.预计今明两年的投资总额为8万元, 2 (1+x) +2 (1+x) 2=8.16. (4分)如图所示,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形上的一个角沿折痕AE翻折上去,使AB与

20、AD边上的AF重合,则四边形ABEFM是一个 大的正方形,他判定的方法是有一组邻边相等的矩形是正方形.【解答】解:根据题意可得,其判定方法是:有一组邻边相等的矩形是正方形.17. (4分)如图是2003年11月份的日历,现用一矩形在日历中任意框出 4个数请用一个等式表示,& b、c、d之间的关系 a+d=b+c日一二四五六134567S9W1112131415161712 19202L1123242526272S2930【解答】解:a+d=b+c (形式不唯一)18. (4分)为了测量一个圆铁环的半径,某同学用了如下方法,将铁环平放在水平桌面上,用有一个角为30。的直角三角板和刻度尺按

21、如图所示的方法得到相关数据,进而求出铁环半径,若测得 PA=5cm,则铁环的半径是 513 cm.【解答】解:连接FA, FE, FP, ./APE=120, / FAP玄 FEP=90.vPA=PE. .FA国 AFEF?o ./APF=60, .AF=APtan60°=5Q.19. (4分)正方形网格中,小格的顶点叫做格点.小华按下列要求作图:在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上; 连接三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了 RtAABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的

22、直角三角形互不全等如图【解答】解:如图所示:20. (4分)小王同学想利用树影测量校园内的树高.他在某一时刻测得小树高为1.5米时,其影长为1.2米,当他测量教学楼旁的一棵大树的影长时, 因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高约为 9.4米.【解答】解:设这棵大树高为x,根据平行投影特点:在同一时刻,不同物体的物高和影长成比例.1 5可得树高比影长为二二=1.25,则有工一1. 4 L 25=0.8,解可得:x=9.4米.三、解答题:(本题共8个小题,共82分)21. (8分)计算:后、-sin600+ (-2立)0-隼【解答】

23、解:原式=(J.j")-工-=-=2.22. (8分)如图所示,在菱形 ABCD中,点E, F分别在CD, BC上,且CE=CF求证:AE=AF【解答】证明:二.四边形 ABCD为菱形, . AD=AB=CD=CB / B=/ D.又 = CE=CF.CD- CE=CB- CF,即 DE=BF. .AD/ AABF. .AE=AF23. (8分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数 1800 510 250 210 150 120人数113532(1)求这15位营销人员该月销售量的平均数、中位数和众数;(2)假

24、设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.解答解:(1)平均数是:1加叶510+250乂3+三? .< 5+1 5。乂 §+120 3=320)(件), 15表中的数据是按从大到小的顺序排列的,处于中间位置的是210,因而中位数是210(件),210出现了 5次最多,所以众数是210;(2)不合理.因为15人中有13人的销售额不到320件,320件虽是所给一组数据的平均数,它却不能很好地反映销售人员的一般水平.销售额定为210件合适些,因为210件既是中位数,又是众数,是大部分人能达到的定额.24

25、. (10分)已知关于x的一元二次方程aX2+x- a=0 (aw0).(1)求证:对于任意非零实数a,该方程包有两个异号的实数根;(2)设X1、X2是该方程的两个根,若 区|+|刈=4,求a的值.【解答】证明:(D . =1+4a. .> 0.方程恒有两个实数根.设方程的两根为X1, X2. aw 0.X1?X2=- 1< 0.方程恒有两个异号的实数根;解:(2) .442<0. . |xi|+|x2|=|xi X2|=4. 2贝U ( Xi+xO 4xiX2=16.又 Xl+X2=.1 二+4=16. a a=+a -6 .25. (10分)某学习小组在探索 客内角都相等

26、的圆内接多边形是否为正多边形 ”时, 进行如下讨论:甲同学:这种多边形不一定是正多边形,如圆内接矩形.乙同学:我发现边数是6时,它也不一定是正多边形,如图1, ZXABC是正三角形, AD=BE=CF,证明六边形ADBECF勺各内角相等,但它未必是正六边形.内同学:我能证明,边数是 5时,它是正多边形,我想,边数是7时,它可能也 是正多边形.(1)请你说明乙同学构造的六边形各内角相等;(2)请你证明,各内角都相等的圆内接七边形 ABCDEFG如图2)是正七边形;(不必写已知,求证)(3)根据以上探索过程,提出你的猜想.(不必证明)【解答】解:(1)由图知/ AFC对嬴,庙血,而/ DAF对的面

27、=5而+筋=而+5说=血,/AFCW DAF.同理可证,其余各角都等于/ AFG故图(1)中六边形各角相等;(2) :/A对辛,/B对亩,又. / A=Z B,. 忘二嬴命二菽,同理,赢二而痴缄总工而.(3)猜想:当边数是奇数时(或当边数是3, 5, 7, 9,时),各内角相等的圆内接多边形是正多边形.26. (12分)某中学为筹备校庆活动,准备印制一批校庆纪念册.该纪念册每册需要10张8K大小的纸,其中4张为彩页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页 300元/张,黑白页50元/张;印刷费与印数的关系见下表.印数a (单位:千册)1&a

28、mp;a<55<a< 10彩色(单位:元/张)2.22.0黑白(单位:元/张)0.70.6(1)印制这批纪念册的制版费为1500元:(2)若印制2千册,则共需多少费用?(3)如果该校希望印数至少为 4千册,总费用至多为60000元,求印数的取值范围.(精确到0.01千册)【解答】解:(1) 4 >300+6>50=1500 元;(2)若印制2千册,则印刷费为(2.2M+0.7>6) >2000=26000 (元)所以总费用为26000+1500=27500(元);(3)设印数为x千册,若4&x<5,由题意得1000X 2.2>4+0

29、.7>6) X+150OC 60000解得x<4.5二 4<x< 4.5若x>5,由题意得1000X 2.0>4+0.6>6) x+150(K 60000解得x<5.04- 5<x< 5.04综上所述,符合要求的印数x (千册)的取值范围为4<x<4.5或 5<x<5.04.27. (12分)如图,平面直角坐标系中,四边形 OABC为矩形,点A、B的坐标分别 为(6, 0), (6, 8).动点M、N分别从O、B同时出发,以每秒1个单位的速度运 动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作

30、NP>± BC, 交AC于P,连接MP.已知动点运动了 x秒.(1) P点的坐标为多少;(用含x的代数式表示)(2)试求 MPA面积的最大值,并求此时x的值;(3)请你探索:当x为何值时, MPA是一个等腰三角形?你发现了几种情况?写 出你的研究成果.【解答】解:(1)由题意可知C (0, 8),又A (6, 0),所以直线AC解析式为:y=-x+8,因为P点的横坐标与N点的横坐标相同为6-x,代入直线AC中得yx,所以P点坐标为(6- x, - x);(2)设4MPA的面积为S,在ZXMPA中,MA=6-x, MA边上的高为会,其中,00x<6,-S=|r (6-x)

31、gx制(-x2+6x) =- (x-3) 2+6,.S的最大值为6,此时x=3;(3)延长NP交x轴于Q,则有PQ!OA若MP=PA,v PQ1 MA,MQ=QA=x3x=6,x=2;4若 MP=MA, WJ MQ=6- 2x, PQ哥,PM=MA=6- x,在 RtA PMQ 中,PMMd+Pd. (6 x) 2= (6-2x) 2+(?x) 2,1Q8X= 43 ;若PA=AM, PAh-x, AM=6 x,.回c-x=6- x,28. (14分)已知:如图,点 A在y轴上,OA与x轴交于B、C两点,与y轴交于点 D (0, 3)和点 E (0, - 1)(1)求经过B、E、C三点的二次函

32、数的解析式;(2)若经过第一、二、三象限的一动直线切。 A于点P (s, t),与x轴交于点M,连接PA并延长与。A交于点Q,设Q点的纵坐标为y,求y关于t的函数关系式,并观察图形写出自变量t的取值范围;(3)在(2)的条件下,当y=0时,求切线PM的解析式,并借助函数图象,求出(1)中抛物线在切线PM下方的点的横坐标x的取值范围.和E【解答】解:(1)解法一:连接AC.DE为。A的直径,DE,BC .BO=CO- D (0, 3), E (0, - 1) .DE=|3- (T) |=4, OE=1:1, .AO=1, AC=-DE=2在 RtAOC中,AC2=AO2+OC . OC= 。心

33、0),B Vso)设经过B、E、C三点的抛物线的解析式为 dK-巫)G+岳),则-1=a (0 -痣)(0+/3)解得a=y -y=j- (x -V3) (x+/) =1-x2- 1 (2 分).解法二:= DE为。A的直径,DE,BC .BO=CO .OC=OD?OE- D (0, 3), E (0, - 1) .DO=3 OE=1. OC2=31=3 . OC=:-; .C (V3, 0), B (-x/3, 0)以下同解法一;(2)解法一:过点P作PF,y轴于F,过点Q作QN±y轴于N丁 / PFAW QNA=90 , F点的纵坐标为tN点的纵坐标为y . / PAFW QAN, PA=QA .PFA AQNA . FA=NA,.AO=1 . |t - 1|=|1 - y|动切线PM经过第一、二、三象限观察图形可得1<t<3, -1<y<1. t - 1=1 - y.即 y= - t+2.;y关于t的函数关系式为y=-t+2 (1<t<3) (5分)解法二:(i)当经过一、二、三象限的切线 PM运动到使得Q点与C点重合时,y=0连接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论