




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第三章指数函数和对数函数第三章指数函数和对数函数2指数扩充及其运算性质指数扩充及其运算性质第三章指数函数和对数函数第三章指数函数和对数函数1分数指数幂分数指数幂给定正实数给定正实数a,对于任意给定的整数,对于任意给定的整数m,n(m,n互素互素),存在唯一的正实数,存在唯一的正实数b,使得,使得bnam,就把,就把b叫作叫作 _,记,记作作_.它就是分数指数幂它就是分数指数幂第三章指数函数和对数函数第三章指数函数和对数函数1mna没有意义没有意义0第三章指数函数和对数函数第三章指数函数和对数函数由于有理数分为整数和分数,则引入分数指由于有理数分为整数和分数,则引入分数指数幂的概念后,指数概念就
2、实现了由整数指数幂的概念后,指数概念就实现了由整数指数幂向有理数指数幂的扩充数幂向有理数指数幂的扩充想一想想一想第三章指数函数和对数函数第三章指数函数和对数函数第三章指数函数和对数函数第三章指数函数和对数函数做一做做一做 第三章指数函数和对数函数第三章指数函数和对数函数答案:答案:A第三章指数函数和对数函数第三章指数函数和对数函数第三章指数函数和对数函数第三章指数函数和对数函数其中其中m,nN.当当a0,b0时,对任意实数时,对任意实数m,n都满足都满足上述性质,上述五条运算性质也可以归纳为上述性质,上述五条运算性质也可以归纳为三条:三条:(1)aman_;(2)(am)n_;(3)(ab)n
3、_.amnamnanbn第三章指数函数和对数函数第三章指数函数和对数函数3无理数指数幂无理数指数幂对于无理数指数幂,我们可以从有理数指数对于无理数指数幂,我们可以从有理数指数幂来理解,由于无理数是无限不循环小数,幂来理解,由于无理数是无限不循环小数,因此可以取无理数的不足近似值和过剩近似因此可以取无理数的不足近似值和过剩近似值来无限逼近它值来无限逼近它一般来说,无理数指数幂一般来说,无理数指数幂ap(a0,p是一个是一个无理数无理数)是一个确定的实数是一个确定的实数第三章指数函数和对数函数第三章指数函数和对数函数由于实数分为有理数和无理数,则规定了无由于实数分为有理数和无理数,则规定了无理数指
4、数幂后,我们就把指数扩大为全体实理数指数幂后,我们就把指数扩大为全体实数了数了做一做做一做第三章指数函数和对数函数第三章指数函数和对数函数第三章指数函数和对数函数第三章指数函数和对数函数题型一分数指数幂与根式的转化题型一分数指数幂与根式的转化 计算下列各式的值:计算下列各式的值: 第三章指数函数和对数函数第三章指数函数和对数函数第三章指数函数和对数函数第三章指数函数和对数函数【思维总结】【思维总结】解决本题的关键是理解分数解决本题的关键是理解分数指数幂的意义,根式是分数指数幂的另一种指数幂的意义,根式是分数指数幂的另一种形式,将根式化为分数指数幂的形式是计算形式,将根式化为分数指数幂的形式是计
5、算的前提的前提第三章指数函数和对数函数第三章指数函数和对数函数题型二指数幂的综合运算题型二指数幂的综合运算 计算下列各式计算下列各式 第三章指数函数和对数函数第三章指数函数和对数函数第三章指数函数和对数函数第三章指数函数和对数函数【名师点睛】【名师点睛】进行指数运算时,要化负指进行指数运算时,要化负指数为正指数,化根式为分数指数幂,化小数数为正指数,化根式为分数指数幂,化小数为分数运算,同时还要注意运算顺序问题为分数运算,同时还要注意运算顺序问题第三章指数函数和对数函数第三章指数函数和对数函数题型三有关指数幂的条件求值题型三有关指数幂的条件求值第三章指数函数和对数函数第三章指数函数和对数函数第
6、三章指数函数和对数函数第三章指数函数和对数函数【思维总结】【思维总结】巧妙地换元、整体代换、完巧妙地换元、整体代换、完全平方公式、立方和公式等是解这类题常用全平方公式、立方和公式等是解这类题常用的方法和知识的方法和知识第三章指数函数和对数函数第三章指数函数和对数函数方法技巧方法技巧1指数幂的一般运算步骤是:有括号先算指数幂的一般运算步骤是:有括号先算括号里的;无括号先做指数运算;负指数幂括号里的;无括号先做指数运算;负指数幂化为正指数幂的倒数;底数是负数,先确定化为正指数幂的倒数;底数是负数,先确定符号;底数是小数,先要化成分数;底数是符号;底数是小数,先要化成分数;底数是带分数,先要化成假分
7、数,然后要尽可能用带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质幂的形式表示,便于用指数运算性质第三章指数函数和对数函数第三章指数函数和对数函数2在分数指数幂运算中,既含有分数指数在分数指数幂运算中,既含有分数指数幂,又含有根式,应该把根式统一化为分数幂,又含有根式,应该把根式统一化为分数指数幂的形式,便于运算,如果根式中根指指数幂的形式,便于运算,如果根式中根指数不同,也应化为分数指数幂的形式数不同,也应化为分数指数幂的形式第三章指数函数和对数函数第三章指数函数和对数函数失误防范失误防范第三章指数函数和对数函数第三章指数函数和对数函数第三章指数函数和对数函数第三章指数函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高考物理“状态判断”准确识别试题
- 工业测试考试题及答案
- 职员守秘合同及信息保护承诺函7篇范文
- 高考试题地理分类及答案
- 供应链合作伙伴评估指标模板
- 高等选矿学考试题及答案
- 指南语言领域试卷及答案
- 九绵高速公路模拟考试题及答案
- 公司冷藏品运输合同5篇
- 2025年中考语文陕西试卷及答案
- 人机工程学-人体感受系统-课件
- 乡村振兴汇报模板
- 津16D19 天津市住宅区及住宅建筑内光纤到户通信设施标准设计图集 DBJT29-205-2016
- 心肺复苏(CPR)培训考核试题及答案
- 开展健康生活方式、营养和慢性病预防知识教育和宣传活动
- 高分子物理-第2章-聚合物的凝聚态结构课件
- CNAS体系基础知识培训课件
- 特种设备制造内审及管理评审资料汇编经典版
- 河蟹健康养殖与常见疾病防治技术课件
- 小学二年级《爱国主义教育》主题班会课件
- 儿童牙外伤讲稿
评论
0/150
提交评论