两角和与差的余弦公式教学设计_第1页
两角和与差的余弦公式教学设计_第2页
两角和与差的余弦公式教学设计_第3页
两角和与差的余弦公式教学设计_第4页
免费预览已结束,剩余1页可下载查看

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.两角和与差的余弦公式教学设计一、教材地位和作用分析:两角和与差的正弦、余弦、正切是本章的重要内容,是正弦线、余弦线和诱导公式等知识的延伸, 是后继内容二倍角公式、 和差化积、 积化和差公式的知识基础,对于三角变换、 三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有重要的支撑作用。 本课时主要讲授平面内两点间距离公式、两角和与差的余弦公式以及诱导公式。二、教学目标:1、知识目标:、使学生了解平面内两点间距离公式的推导并熟记公式;、使学生理解两角和与差的余弦公式和诱导公式的推导;、使学生能够从正反两个方向运用公式解决简单应用问题。2、能力目标:、培养学生逆向思维的意识和习惯;、培养学生

2、的代数意识,特殊值法的应用意识;、培养学生的观察能力,逻辑推理能力和合作学习能力。3、情感目标:、通过观察、对比体会公式的线形美,对称美;、培养学生不怕困难,勇于探索的求知精神。三、教学重点和难点:教学重点: 两角和与差的余弦公式的推导及运用。教学难点: 两角和与差的余弦公式的灵活运用。四、教学方法:创设情境有利于问题自然、流畅地提出,提出问题是为了引发思考,思考的表现形式是探索尝试,探索尝试是思维活动中最有意义的部分,激发学生积极主动的思维活动是我们每节课都应追求的目标。给学生的思维以适当的引导并不一定会降低学生思维的层次,反而能够提高思维的有效性。从而体现教师主导作用和学生主体作用的;.和

3、谐统一。由此我决定采用以下的教学方法:创设情境-提出问题 -探索尝试 -启发引导 -解决问题。学法指导:1、要求学生做好正弦线、余弦线、同一坐标轴上两点间距离公式,特别是用角的余弦和正弦表示终边上特殊点的坐标这些必要的知识准备。( 体现学习过程中循序渐进,温故知新的认知规律。)2、让学生注意观察、对比两角和与差的余弦公式中正弦、余弦的顺序; 角的顺序关系,培养学生的观察能力,并通过观察体会公式的对称美。五、教学过程教学程序0000让学生先讨论“ cos ( 45 +30 )=cos45 +cos30 是否课成立?”。(学生可能通过计算器、量余弦线的长度、题特殊角三角函数值和余弦函数的值域三种途

4、径解引0000入决问题)。得出 cos ( 45+30 ) cos45+cos30 。进而得出cos ( + ) cos +cos 这个结论。此时再次提出那么cos ( + )又等于什么呢?这正是我们今天要研究的内容。揭示课题:两角和与差的余弦。复 1、画出一个锐角、一个钝角的正弦线、余弦线。习2、如果角 的终边与单位圆相交于点P,点 P 的提坐标能否用角 的三角函数值表示?怎样表示?问3、写出同一坐标轴上两点间距离公式。设计意图通过创设问题情境, 自然流畅地提出问题, 揭示课题, 引发学生思考。使学生目标明确、迅速进入角色。通过复习使学生熟悉基础知识、特别是用角的正、余弦表示特殊点的坐标,为

5、新课的推进做准备。引在解决上面的问题之前,我们先来解决“平面内两点间距离的求法”这一问题。通过上面的复习,我让学生通过特殊值在转化到一般情况,符入 们已经熟悉了同一坐标轴上两点间距离公式。那新 么,平面内两点间距离与坐标有什么样的关系呢?合学生的认知规律。课(通过特殊的例子让学生体会平面内两点间距离和同一坐标轴上两点间距离的关系。);.1、分析:设 P1(x1,y1),P2( x2,y2)则有: M1( x1, 1、通过几何画板动态演0), M( x ,0) ,N( 0,y ), N ( 0, y )。221122通过演示课件提出问题:P1P2的长度与什么有关?根据图写出 MM和 NN。121

6、2P1Q= M1M=2x2 -x 121 2 y2-y1QP= N N=根据勾股定理写出22222示,给学生以直观感受,让他们认识到: 平面内两点间距离和同一坐标轴上两点间距离总能构成一个直角三角形, 利用勾股定理即可解决。2、两角和余弦公式的证P P=P1Q+QP =(x-x1)+(y2-y1)1222由此得平面内P1( x1,y1)、P2( x2,y2)两点间的距离公式 :22明中存在困难: 三角函数表示单位圆上点的坐标,它虽然算理简单, 但学生P 1P2= (x 2-x 1) +(y 2-y 1)由于陌生而很不习惯, 通2、在直角坐标系内做单位圆,并做出任意角过前面习环节应该有所 , +

7、 和 - 。它们的终边分别交单位圆于P2、熟悉。 3、两角和的余弦P3 和 P4 点,单位圆与 X 轴交于 P1。则: P1(1,0) 、 学完之后,要强调其中两P2( cos ,sin )、P3( cos( +),sin ( + ) 角均为任意角,这样一P4 (cos ,-sin )来,两角差的余弦只是两根据 P4P 即可得到角和的余弦的特殊形式。1P =P23cos ( + ) = cos cos - sin sin 教用 - 代替 得 cos ( - )的公式。注意公式的结构特征。学例 1 的作用一方面让学例 1、求 cos15°及 cos105°的值生熟练两角和与差

8、的余分析:本题关键是将15°角分成 45°与 30°的差或者弦公式,另一方面也向学过分解成 60°与 45°的差,再利用两角差的余弦公式即可求解 对于 cos105°,可进行类似地处理, cos105° 生展示了公式的一种实 cos( 60° 45°)际应用价值, 即:将非特程殊角转化为特殊角的和与差。;.小结例 2 利用两角和与差的余弦公式证明下列诱导公式:( 1) cos( 2 - )=sin ( 2) sin( 2 -)=cos 例 3 已知 sin ,(,),cos,且 是第三象限的角,求cos(

9、 )的值分析:观察公式C 与本题已知条件应先计算出 cos,cos,再代入公式求值求 cos,cos的值可借助于同角三角函数的平方关系, 并注意 ,的取值范围来求解课堂练习:1. ( 1)求 sin75 的°值( 2)求 cos75°cos105° sin75 °sin105 °的值2. ( 1)求证: cos( ) sin ( 2)已知 sin ,且 为第二象限角,求cos( )的值( 3)已知 sin( 30° ),60° 150°,求cos 本节课我们学习了下面两组公式,在公式的小节以十四字口诀概括两角和与差

10、的三角函数记忆上,我们应注意函数和符号的变化。关系式,既体现了公式的本质特征,又朗朗上口,两角和与差的余弦:便于记忆。有助于学生对例 2的 目的 在于 熟悉 公式 ,同 时对 同角 三角 函数 关系 有复 习的 作用 ,其 难度 不是 很大 ,在 提供 了公 式之后 ,学 生应 当能 够完成 .;.(同名之积相加减,运算符号左右反。 )cos ( + ) = cos cos - sin sin cos( -) = cos cos+ sin sin 1、课堂练习(P38)、第 2 题( 3)、( 4)。、第 3 题( 2)、( 3)。练2、课后作业P40习巩习题 4.6 第 2 、 3 、(2) 、(3)固3、思考题:试运用今天所学知识和方法证明:sin ( + )= sin cos +cos sin sin ( - )= sin cos -

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论