高二曲线练习题带答案_第1页
高二曲线练习题带答案_第2页
高二曲线练习题带答案_第3页
高二曲线练习题带答案_第4页
高二曲线练习题带答案_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、圆锥曲线一、椭圆:(1)椭圆的定义:平面内与两个定点的距离的和等于常数(大于)的点的轨迹。第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数的点的轨迹。其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距;定直线叫做准线。常数叫做离心率。注意:表示椭圆;表示线段;没有轨迹;(2)椭圆的标准方程、图象及几何性质:中心在原点,焦点在轴上中心在原点,焦点在轴上标准方程参数方程为参数)为参数)图 形xOF1F2PyA2A1B1B2A1xOF1F2PyA2B2B1顶 点对称轴轴,轴;短轴为,长轴为焦 点焦 距 离心率(离心率越大,椭圆越扁)准 线通 径(为焦准距)焦半径焦点弦仅与它的中点的横坐

2、标有关仅与它的中点的纵坐标有关焦准距二、双曲线:(1)双曲线的定义:平面内与两个定点的距离的差的绝对值等于常数(小于)的点的轨迹。第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数的点的轨迹。其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距;定直线叫做准线。常数叫做离心率。注意:与()表示双曲线的一支。表示两条射线;没有轨迹;(2)双曲线的标准方程、图象及几何性质:中心在原点,焦点在轴上中心在原点,焦点在轴上标准方程图 形xOF1F2PyA2A1yxOF1PB2B1F2顶 点对称轴轴,轴;虚轴为,实轴为焦 点焦 距 离心率(离心率越大,开口越大)准 线渐近线通 径(为焦准距)焦

3、半径在左支在右支在下支在上支焦准距(3)双曲线的渐近线:求双曲线的渐近线,可令其右边的1为0,即得,因式分解得到。与双曲线共渐近线的双曲线系方程是;(4)等轴双曲线为,其离心率为三、抛物线:(1)抛物线的定义:平面内与一个定点的距离等于到一条定直线的距离点的轨迹。其中:定点为抛物线的焦点,定直线叫做准线。(2)抛物线的标准方程、图象及几何性质:焦点在轴上,开口向右焦点在轴上,开口向左焦点在轴上,开口向上焦点在轴上,开口向下标准方程图 形xOFPyOFPyxOFPyxOFPyx顶 点对称轴轴轴焦 点离心率准 线通 径焦半径焦点弦(当时,为通径)焦准距四、圆锥曲线的统一定义:若平面内一个动点到一个

4、定点和一条定直线的距离之比等于一个常数则动点的轨迹为圆锥曲线。其中定点为焦点,定直线为准线,为离心率。当时,轨迹为椭圆;当时,轨迹为抛物线;当时,轨迹为双曲线。高考题1.(福建卷11)又曲线(a0,b0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为2.(海南卷11)已知点P在抛物线y2 = 4x上,那么点P到点Q(2,1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为(,1)3.(湖南卷8)若双曲线(a0,b0)上横坐标为的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是(2,+)4.(江西卷7)已知、是椭圆的两个焦

5、点,满足的点总在椭圆内部,则椭圆离心率的取值范围是5.(全国二9)设,则双曲线的离心率的取值范围是6.(山东卷(10)设椭圆C1的离心率为,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为7.(陕西卷8)双曲线(,)的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为8.(天津卷(7)设椭圆(,)的右焦点与抛物线的焦点相同,离心率为,则此椭圆的方程为9.(浙江卷7)若双曲线的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是10.(重庆卷(8)已知双曲线(a0,b0)的一条渐近线为y=kx(

6、k0),离心率e=,则双曲线方程为11.(海南卷14)过双曲线的右顶点为A,右焦点为F。过点F平行双曲线的一条渐近线的直线与双曲线交于点B,则AFB的面积为_12.(湖南卷12)已知椭圆(ab0)的右焦点为F,右准线为,离心率e=过顶点A(0,b)作AM,垂足为M,则直线FM的斜率等于 . 13.(江苏卷12)在平面直角坐标系中,椭圆1( 0)的焦距为2,以O为圆心,为半径的圆,过点作圆的两切线互相垂直,则离心率= 14.(江西卷15)过抛物线的焦点作倾角为的直线,与抛物线分别交于、两点(在轴左侧),则 15.(全国一14)已知抛物线的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论