




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、勾股定理的应用一、单元设计总体分析(一)教材所处的地位 - 教材分析:人教版数学八年级下册第 17章第2节是学习 勾股定理及其逆定理的应用。 因此教学中可以结合实际情况让学生了解勾股定理及其逆 定理在现实生活以及数学中的各种应用,体会勾股定理的文化价值 .(二)单元教学目标:1. 能熟练、灵活地应用勾股定理及其逆定理 .2. 会应用勾股定理及其逆定理解简单的实际问题 .(三)单元教学重难点:勾股定理及其逆定理的应用 .(四)单元教学策略:利用实物模型及多媒体将实际问题转化为应用勾股定理及其逆定 理解直角三角形的数学问题 .二、课时教学设计(一)教学目标1知识目标(1) 了解 勾股定理的作用是“
2、在直角三角形中已知两边求第三边” ;而勾股逆定理的作 用是由“三角形边的关系得出三角形是直角三角形” .(2) 掌握 勾股定理及其逆定理, 运用 勾股定理 进行简单的长度计算 .2 过程性目标(1) 让学生亲自经历卷折圆柱 .(2) 让学生在亲自经历卷折圆柱中认识到圆柱的侧面展开图是一个长方形(矩形) .(3) 让学生通过观察、实验、归纳等手段,培养其 将“实际问题转化为应用勾股定理解 直角三角形的数学问题”的能力 .( 二 ) 教学重点、难点教学重点:勾股定理的应用 . 教学难点:将实际问题转化为“应用勾股定理及其逆定理解直角三角形的数学问题” .原因分析:1. 例 1 中学生因为其空间想像
3、能力有限,很难想到 蚂蚁爬行的路径是什 么,为此通过制作圆柱模型解决难题 .2.例2中学生难找到 要计算的具体线段 .通过多媒体演示来启发学生 的思维.教学突破点:突出重点的教学策略: 通过回忆复习、例题、小结等,突出重点“ 勾股定理及其逆定理的应用 ”,三)、教学过程教学过程设计意图复习部分复习练习,引出课题例1、在Rt ABC中,两条直角边分别为 求斜边c的值?通过简单计算题的练习,帮助学生3, 4,回顾勾股定理,加深定理的记忆理解,为新课作好准备答案:c=5.例2、在Rt ABC中,一直角边分别为5,斜边为13,求另一直角边的长是多少?答案:另一直角边的长是 12.小结:在上面两个小题中
4、,我们应用了勾股定理: 在Rt abc 中,若/ C= 90°,贝U c2= a2+b2 .加深定理的记忆理解,突出定理的 作用新课讲解通过动手作模型,培养学生的动 手、动脑能力,解决“学生空间想像能 力有限,想不到蚂蚁爬行的路径”的难 题,从而突破难点.BA根据“两点之间,线段最短”,所求的最短路程就是侧面展开图矩形ASBC对角线AC之长.我们可以由学生回答“AC之间的最短距离及根 据”,有利于帮助学生找准新旧知识的 连接点,唤起与形成新知识相关的旧知 识,从而使学生的原认知结构对新知识 的学习具有某种“召唤力”勾股定理能解决直角三角形的许多问题,因此在现实生活和数学中有着广泛的应
5、用.例1如图14.2.1,一圆柱体的底面周长为 20cm 高AE为4cm EC是上底面的直径. 一只蚂蚁从点 A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.分析:蚂蚁实际上是在圆柱的半个侧面内爬 行大家用一张白纸卷折圆柱成圆柱形状,标出A、B C、D各点,然后打开,蚂蚁在圆柱上爬行的距离, 与在平面纸上的距离一样.AC之间的最短距离是什么?根据是什么?(学生回答)利用勾股定理计算出 AC勺长。再次提问,突岀勾股定理的作用,加深记忆解半=如图,在Rt ABC中,EC=底面周长的一10 cm, 根据勾股定理得(提问:勾股定理)二 AC = AB2 BC2 = 、42 102=2 29 1
6、0.77( cm)(勾股定理).答: 最短路程约为1 0.77 cm.例2 一辆装满货物的卡车,其外形高 2.5米, 宽1.6米,要开进厂门形状如图 14.2.3的某工厂, 问这辆卡车能否通过该工厂的厂门 ?D1L1I11111H2朵-V-图 14.2.3分析由于厂门宽度足够,所以卡车能否通过,只 要看当卡车位于厂门正中间时其高度是否小于 CH如图14 . 2 . 3所示,点D在离厂门中线 米处,且 CDLAB, 与地面交于 H. 解 : 0(= 1米(大门宽度一半),OD= 0.8米(卡车宽度一半)在Rt OCD中,由勾股定理得0.8利用多媒体设备演示卡车通过厂 门正中间时的过程(在几何画板
7、上画出 厂门的形状,用移动的矩形表示卡车, 矩形的高低可调),让学生通过观察, 找到需要计算的线段 CH CD及 CD所在 的直角三角形OCD将实际问题转化为 应用勾股定理解直角三角形的数学 问题.CD= 0C - 0D 2 =T - 0.8? =0 . 6 米,CH=0 . 6 + 2 . 3 = 2 . 9(米)2. 5(米).因此高度上有 0.4米的余量,所以卡车能通过 厂门.练习1.如图,从电杆离地面 5米处向地面拉一条 7米长 的钢缆,求地面钢缆固定点 A到电杆底部B的距离.课 堂 练 习(第1题)2.现准备将一块形为直角三角形的绿地扩大,使其 仍为直角三角形,两直角边同时扩大到原来
8、的两倍, 问斜边扩大到原来的多少倍 ?(四).作业:同步导学:第40-41页,勾股定理的应用基础训练(1)本单元分两课时,第二课时讲解例 3、例4,例4中同时用到勾股定理及逆定 理,重点培养学生的演绎推理能力,具体设计略.(五)、错题的估计和采集:(1)错例从电杆离地面5米处向地面拉一条 7米长的钢缆,求地面钢缆固定点 A到电杆底部B 的距离.解1 : 电杆垂直于地面.根据勾股定理:AE2 =7 + 5 2 =74答:钢缆固定点A到电杆底部E的距离是.74米.解2: 电杆垂直于地面.根据勾股定理:AB=72 5 2 =24答:钢缆固定点A到电杆底部B的距离是24米.( 2)原因分析: 第一种错误是将直角边与斜边的位置搞错,或是记错了公式,应该按平方 差计算,却按平方和计算 ; 第二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钻床工组织能力考核试卷及答案
- 离婚协议书是否具有法律效力
- 绝缘成型件制造工转岗考核试卷及答案
- 电影摄影设备装配调试工安全操作规程考核试卷及答案
- 浸渍干燥工标准化技术规程
- 2026届江苏省扬州市邗江区部分学校九年级数学第一学期期末检测模拟试题含解析
- 2025合同模板健身器材采购合同书范本
- 买卖合同范本汇编15篇
- 代理合同范文(20篇)
- EMIP培训资料-课件
- 二年级趣味数学校本教材
- 好利来工作协议合同模板
- 煤矿回收材料管理制度
- 2025年云南事业单位a类真题及答案
- 美容皮肤临床技术操作规范方案
- 2025年机关意识形态工作要点
- (高清版)DB36∕T 1324-2020 公路建设项目档案管理规范
- 《凯勒战略品牌》课件
- 畜禽粪污资源化利用培训
- 女生穿搭技巧学习通超星期末考试答案章节答案2024年
- 2024年大学试题(政治学)-比较政治制度考试近5年真题集锦(频考类试题)带答案
评论
0/150
提交评论