版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 函数与导数 常见题型一、 小题:1. 函数的图象2. 函数的性质(单调性、奇偶性、周期性、对称性);3. 分段函数求函数值;4. 函数的定义域、值域(最值);5. 函数的零点;6. 抽象函数;二、大题:1. 求曲线在某点处的切线的方程; 2. 求函数的解析式3. 讨论函数的单调性,求单调区间; 4. 求函数的极值点和极值;5. 求函数的最值或值域; 6. 求参数的取值范围7. 证明不等式; 8. 函数应用问题知识点总结1映射:注意 第一个集合中的元素必须有象;一对一,或多对一。2函数值域的求法:分析法 ;配方法 ;判别式法 ;利用函数单调性 ;换元法 ;利用均值不等式 ;利用数形结合或几何意
2、义(斜率、距离、绝对值的意义等);利用函数有界性(、等);导数法3复合函数的有关问题(1)复合函数定义域求法: 若f(x)的定义域为a,b,则复合函数fg(x)的定义域由不等式ag(x)b解出 若fg(x)的定义域为a,b,求 f(x)的定义域,相当于xa,b时,求g(x)的值域。(2)复合函数单调性的判定:首先将原函数分解为基本函数:内函数与外函数;分别研究内、外函数在各自定义域内的单调性;根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。注意:外函数的定义域是内函数的值域。4分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。5函数的奇偶性函数的定义域关于原点对称是
3、函数具有奇偶性的必要条件;是奇函数;是偶函数 ;奇函数在原点有定义,则;1 / 11在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;6函数的单调性单调性的定义:在区间上是增(减)函数当时;单调性的判定:定义法:一般要将式子化为几个因式作积或作商的形式,以利于判断符号;导数法(见导数部分);复合函数法(见3(2);图像法。7函数的周期性(1)周期性的定义:对定义域内的任意,若有 (其中为非零常数),则称函数为周期函数,为它的一个周期。所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。(2)三角函数的周期 ; ; ;函数周期的判定:定义法(试
4、值) 图像法 公式法(利用(2)中结论)8基本初等函数的图像与性质幂函数: ( ;指数函数:;对数函数:;正弦函数:;余弦函数: ; (6)正切函数:;其它常用函数:正比例函数:;反比例函数:;9二次函数:解析式:一般式:;顶点式:,为顶点;零点式: 。二次函数问题解决需考虑的因素:开口方向;对称轴;端点值;与坐标轴交点;判别式;两根符号。二次函数问题解决方法:数形结合;分类讨论。10函数图象图象作法 :描点法(注意三角函数的五点作图)图象变换法导数法图象变换: 平移变换:,左“+”右“-”; 上“+”下“-”; 伸缩变换:, (纵坐标不变,横坐标伸长为原来的倍;, (横坐标不变,纵坐标伸长为
5、原来的倍; 对称变换:; ; 翻转变换:右不动,左向右翻(在左侧图象去掉);上不动,下向上翻(|在下面无图象);11函数图象(曲线)对称性的证明(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明函数与图象的对称性,即证明图象上任意点关于对称中心(对称轴)的对称点在的图象上,反之亦然;12函数零点的求法:直接法(求的根);图象法;二分法.13导数 (1)常见函数的导数公式: ; 。导数的四则运算法则:(4)导数的应用:利用导数求切线:注意:所给点是切点吗?所求的是“在”还是“过”该点的切线?利用导数判断函数单调性: 是增函数; 为减函数; 为常数;
6、 利用导数求极值:求导数;求方程的根;列表得极值。利用导数最大值与最小值:求的极值;求区间端点值(如果有);得最值。典型例题考点一. 函数的解析式、定义域、值域求法例1、函数的定义域为ABCD例2、用mina,b,c表示a,b,c三个数中的最小值,设=min, x+2,10-x (x 0),则的最大值为 (A)4 (B)5 (C)6 (D)7考点二. 函数的零点例1、函数的零点个数为 ( )A.0 B.1 C.2 D.3例2、设a为常数,试讨论方程的实根的个数。例3、已知a是实数,函数,如果函数在区间-1,1上有零点,求实数a的取值范围。解:当a=0时,函数为=2x -3,其零点x=不在区间-
7、1,1上。当a0时,函数在区间-1,1分为两种情况:函数在区间1,1上只有一个零点,此时或解得1a5或a= 函数在区间1,1上有两个零点,此时 或 解得a5或a<故如果函数在区间1,1上有零点,那么实数a的取值范围为(-, 1, +)考点三.函数的单调性、奇偶性和周期性例1、已知定义在R上的奇函数,满足,且在区间0,2上是增函数,若方程f(x)=m(m>0)在区间上有四个不同的根,则解:因为定义在R上的奇函数,满足,所以,所以, 由为奇函数,所以函数图象关于直线对称且,由知,所以函数是以8为周期的周期函数,又因为在区间0,2上是增函数,所以在区间-2,0上也是增函数.如图所示,那么
8、方程=m(m>0)在区间上有四个不同的根,不妨设由对称性知 所以 答案:-8例2、已知函数若则实数的取值范围是 A B C D 考点四.函数的图象例1、右图是函数的图象,给出下列命题: 3是函数的极值点;1是函数的最小值点; 在处切线的斜率小于零;在区间(3,1)上单调递增。 则正确命题的序号是( )ABCD例2、函数( )yxo424-42-2-2xyo4-424-42-2-2xyy4o-424-42-2-26666yx-4-2o4224 考点五. 利用单调性、极值、最值情况,求参数取值范围例1、已知函数f(x)x3ax2bxc在x与x1时都取得极值(1)求a、b的值与函数f(x)的单
9、调区间(2)若对xÎ1,2,不等式f(x)<C2恒成立,求c的取值范围。解:(1)f(x)x3ax2bxc,f¢(x)3x22axb由f¢(),f¢(1)32ab0得a,b2f¢(x)3x2x2(3x2)(x1),函数f(x)的单调区间如下表:x(¥,)(,1)1(1,¥)f¢(x)00f(x)极大值¯极小值所以函数f(x)的递增区间是(¥,)与(1,¥),递减区间是(,1)(2)f(x)x3x22xc,xÎ1,2,当x时,f(x)c为极大值,而
10、f(2)2c,则f(2)2c为最大值。要使f(x)<c2(xÎ1,2)恒成立,只需c2>f(2)2c,解得c<1或c>2考点六 抽象函数 例1、定义在R上的单调函数满足=log3且对任意x,yR都有= +(1)求证为奇函数;(2)若f(k·3)+f(3-9-2)0对任意xR恒成立,求实数k的取值范围解:(1):= + (x,yR),令x=y=0,代入式,得f(0+0)=f(0)+f(0),即 f(0)=0令y=-x,代入式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有0=f(x)+f(-x)即f(-x)=-f(x)对任意xR成立,所以
11、f(x)是奇函数(2):f(3)=log30,即f(3)f(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数,又由(1)f(x)是奇函数f(k·3)-f(3-9-2)=f(-3+9+2), k·3-3+9+2,3-(1+k)·3+20对任意xR成立令t=30,问题等价于t-(1+k)t+20对任意t0恒成立R恒成立考点七:利用导数研究导数的单调性例1、已知函数(1)当时,求曲线在点处的切线方程;(2)当时,讨论的单调性.解(1) 当所以 因此,即曲线又所以曲线(2)因为,所以 ,令当时,所以 当时,>0,此时,函数单调递减;当时,<0,此时
12、,函数单调递增.当时,由,即,解得. 当时, , 恒成立,此时,函数在(0,+)上单调递减; 当时, ,时,,此时,函数单调递减时,<0,此时,函数单调递增时,此时,函数单调递减 当时,由于,时,,此时,函数单调递减:时,<0,此时,函数单调递增.综上所述:当时,函数在上单调递减;函数在上单调递增当时,函数在上单调递减当时,函数在上单调递减;函数 在上单调递增; 函数在上单调递减.考点八:导数与不等式的综合例1、设在上是单调函数.求实数的取值范围;解:(1) 若在上是单调递减函数,则须这样的实数a不存在.故在上不可能是单调递减函数.若在上是单调递增函数,则,由于.从而0<a3.例2、已知为实数,函数若函数的图象上有与轴平行的切线,求的取值范围解:,函数的图象有与轴平行的切线,有实数解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44554.5-2025电子凭证入账要求第5部分:全面数字化的电子发票
- 珙县事业单位2025年下半年公开考核招聘工作人员取消招聘岗位和笔试、面试相关事宜考试备考试题及答案解析
- 2026年甘肃陇南成县招聘城镇公益性岗位人员42人考试参考试题及答案解析
- 2026宝鸡赛威重型机床制造有限公司招聘(22人)考试参考题库及答案解析
- 2026年哈尔滨市第三十九中学校临聘教师招聘4人笔试参考题库及答案解析
- 2026天津领达科技有限责任公司招聘考试备考试题及答案解析
- 2025广东中山西区铁城初级中学(沙朗校区)教师招聘2人考试备考试题及答案解析
- 2026年河北承德市承德县公开招聘消防设施操作员8名考试参考题库及答案解析
- 2026贵州安顺市平坝区中兴实业(集团)有限公司招聘专业技术人员1人考试备考题库及答案解析
- 2026广西北海市铁山港区(临海)工业区人民医院招聘1人考试备考试题及答案解析
- 2026年中小学校长校园安全管理培训考试题及答案
- 2026国家电投招聘试题及答案
- 2025年山东建筑大学思想道德修养与法律基础期末考试模拟题必考题
- 江西省赣州地区2023-2024学年七年级上学期期末英语试(含答案)
- 2025年香港沪江维多利亚笔试及答案
- 2024年人教版七7年级下册数学期末质量检测题(附答案)
- 2025 AHA 心肺复苏与心血管急救指南 - 第6部分:儿童基本生命支持解读
- 2026年大庆医学高等专科学校单招职业技能测试模拟测试卷附答案
- 中央财经大学金融学院行政岗招聘1人(非事业编制)参考笔试题库及答案解析
- 【8物(HY)期末】六安市舒城县2024-2025学年八年级上学期期末考试物理试卷
- 浇铸工安全生产责任制
评论
0/150
提交评论