输电线路防雷改进措施的研究_第1页
输电线路防雷改进措施的研究_第2页
输电线路防雷改进措施的研究_第3页
输电线路防雷改进措施的研究_第4页
输电线路防雷改进措施的研究_第5页
已阅读5页,还剩61页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、. 输电线路防雷改进措施的研究摘要: 通过在华北电网雷电活动频繁地区的寿遵110 kV线路上采用合成绝缘外套金属氧化物避雷器改进防雷措施的研究,经过试验和实际运行,证明此改进是成功、经济和有效的,雷击跳闸次数由1996年的7次,降为1997年的1次,1998年的0次。关键词: 输电线路 防雷 接地 改进措施电网中的事故以输电线路的故障占大部分,输电线路的故障又以雷击跳闸占的比重较大,尤其是在山区的输电线路中,线路故障基本上是由于雷击跳闸引起的,据运行记录,架空输电线路的供电故障一半是雷电引起的,所以防止雷击跳闸可大大降低输电线路的故障,进而降低电网中事故的发生频率。经多年摸索,我国的输电线路防

2、雷基本形成了一系列行之有效的常规防雷方法,如降低接地电阻、架设避雷线、安装自动重合闸等,但是对于一些山区线路,雷害十分频繁,降低接地电阻又极其困难,而且费用高、工作量大,效果也受到一定的限制。由于近些年110 kV及以上电压等级的合成绝缘外套金属氧化物避雷器的研制成功,为解决线路的防雷提供了一种新的手段。华北电网内雷电活动频繁的两个地区之一的承德供电局内一条110 kV输电线路寿遵110 kV线路,该线路经过高山大岭的一段杆塔,在雷雨季节经常遭受雷击,造成线路跳闸,为了解决这个问题,在该线路129号167号杆塔上共安装了20只合成绝缘外套金属氧化物避雷器,经过一年多的运行实践和一系列的带电监测

3、研究,证明这种改进的防雷措施对于山区线路的防雷是经济、有效的。1线路的基本情况及改造情况1.1寿遵线路的基本情况承德地区位于燕山山脉深处,高山大岭约占40%,雷电活动非常频繁,年雷电日在40日以上,每年由于雷击而引起的故障占全年运行故障的60%左右。寿遵110 kV线路全长49.40 km,导线均无换位,平地占13.2%,一般山地占53.1%,高山大岭占33.7%。寿遵线是承德地区与电网的联络线,位置重要,该线路又是承德地区雷击事故较多的线路之一,由于这些杆有近一半在山顶上,所以雷击点的查找以及瓷瓶串的更换极其困难,工作量很大。据资料介绍,雷击是有选择性的。220 kV新(安江)杭(州)一回全

4、长119.4 km,于1960年9月28日投运,自1962年起在线路上安装了大量的磁钢棒进行测量记录,通过1962年至1988年的雷电流幅值记录和1961年至1994年的线路雷击跳闸率分析指出,雷击是有选择性的,线路全长一半左右无雷击记录,多雷区和易击点约占全线的三分之一,加强多雷区和易击点的防雷措施能显著降低雷击跳闸率。所以我们决定在寿遵线129号167号杆上安装避雷器,以降低该线路的雷击跳闸率。1.2寿遵线路129167号杆的改进情况 1.2.1接地的改善129号167号杆中接地电阻值高的杆塔共有11基:129、133、134、138、139、145、154、158、162、165、167

5、号,见表1。此段杆塔高山大岭占42%,一般山地占49%,平地占9%;我们对该段的接地进行了改善,重新埋设了接地引下线,对于接地土壤不好的采取了换土措施,较严重的采取了埋设连续伸长接地体的措施,工程实施后输电杆塔的接地电阻有了明显的降低,如表2所示表111基杆塔接地电阻值高的情况杆塔号地 形地 质接地型式工频电阻设计值实测值129山顶岩石J2020100133山腰风化岩J202081134山顶岩石甲32038138山顶风化岩J202055139山腰岩石J202037145半山腰1风化岩甲320101154半山腰风化岩甲22041158半山腰风化岩甲32058162山顶岩石J202062165山顶

6、岩石J2020108167山顶风化岩甲31535表211基杆塔改造前后接地电阻值的比较杆塔号实施前实施后1996-05实测1997-01实测1997-03实测1997-05实测129100111715133813.72.82.8134384.64.24.01385598139371222161451011926201544117221585810181626250165108152210167352014 1.2.2外绝缘的改善对于这一段线路中所有的零值瓷瓶进行了更换,并且对所有的直线杆塔(保证对地距离足够的条件下)每相增加一片绝缘子,改为采用8片 XP-7绝缘子。实施后的绝

7、缘子爬电距离(下称爬距)、泄漏比距(下称泄比)与实施前的对照表参见表3,从表中可以明显看到线路的绝缘水平有较大幅度的提高。表3改造前后爬距、泄比对照表杆塔号实施前实施后零值绝缘子片数/片爬 距cm泄 比cm*kV-1爬 距cm泄 比cm*kV-1实施前实施后12917401.5823202.11013017401.5823202.11013317401.5823202.11013420301.8423202.10013717401.5823202.11013820301.8423202.10013920301.8423202.10014214501.3123202.12014517401.58

8、23202.10015417401.5823202.11015514501.3123202.12015820301.8423202.10016220301.8423202.10016417401.5823202.11016514501.3123202.120 2避雷器的选择及参数的确定2.1避雷器的选择2.1.1选择复合绝缘外套氧化锌避雷器由于常用的避雷器是瓷外套,比较重,安装不便,使用在线路上有一定的局限性,而且如果发生爆炸,它的碎片将危及临近绝缘子的运行安全,所以必须选择一种比较适合于线路上使用的避雷器。随着国内硅橡胶技术的发展,近些年研制成功的复合绝缘外套氧化锌避雷器就

9、是一种适合悬挂于线路杆塔上的避雷器,与传统的瓷外套避雷器相比,它除去了笨重的外套,改用新型硅橡胶复合有机外套,因而它具有重量轻等优点,甚至在复合外套避雷器损坏时能允许线路继续运行,而其电气特性、保护特性方面大体与瓷外套避雷器相当。国际上,美国、日本、俄罗斯等国已大量使用复合外套氧化锌避雷器,在美国的公路上随处可见运行中的配电变压器都带有复合外套氧化锌避雷器,据统计美国己有上千万只复合外套氧化锌避雷器在电网中使用,日本也有百万只复合外套氧化锌避雷器在电网中使用。随着我国硅橡胶技术的发展,我国也相继研制成功了110 kV、220 kV的复合外套氧化锌避雷器,表4是北京某公司研制的110 kV复合外

10、套氧化锌避雷器的电气特性。表4110 kV复合外套氧化锌避雷器电气特性kV项目电压值系统电压110额定电压100持续运行电压73标称放电电流10陡波冲击电流下残压291雷电冲击电流下残压260操作冲击电流下残压221直流1 mA电压145 2.1.2选择外部带间隙的复合绝缘外套氧化锌避雷器悬挂在线路铁塔上的复合绝缘外套氧化锌避雷器有两种:一种是外部带间隙的复合绝缘外套氧化锌避雷器(简称 GMOA);另一种是外部不串间隙的复合绝缘外套氧化锌避雷器(WGMOA)。GMOA的外串间隙在线路正常运行时能够隔离电网运行电压,保持MOA不承受电压,所以避雷器的额电压可以选得较低,而且在M

11、OA故障损坏时允许线路继续运行,但是这种避雷器的保护特性较差,放电特性主要由间隙决定,其冲击放电电压比避雷器的残压要高得多。图5给出了北京某公司研制的110 kV等级带串联外间隙的避雷器的外间隙冲击放电电压的试验结果。当WGMOA悬挂在线路上运行时,其运行状况可随时得到监视,且安装方便,保护特性相对来说较好,仅决定于避雷器的残压。两种避雷器使用时各有优缺点,为了安装方便、获得好的保护效果,并便于监视避雷器的运行状况,我们决定选择使用外部不串间隙的复合绝缘外套氧化锌避雷器。 表5110 kV带串联间隙的氧化锌避雷器的间隙特性项目间隙距离mm正极性负极性U50kVS%U50kVS%避雷器60047

12、72.45172.0串联6505162.15481.9外间隙7005422.16141.62.2避雷器参数的选择由于选择使用WGMOA,避雷器长期运行在相电压下,且线路运行条件比变电站内的运行条件苛刻,为了避雷器运行的可靠性,将110 kV复合绝缘外套氧化锌避雷器的额定电压由100 kV提高到120 kV,持续运行电压由73 kV提高到90 kV,直流1 mA电压提高到170 kV,考虑到避雷器遭直击雷的几率大,因而避雷器的大电流耐受水平由65 kA提高到100 kA,具体参数见表6。表6WGMOA的参数系统电压kV额定电压kV持续运行电压/kVU1 mA/kVU10 kA/kVU20 kA/

13、kVI2 ms/A大电流耐受水平/kA11012090170308345600100 另外由于避雷器长期悬挂于线路上并承受相电压的作用,我们在避雷器的型式试验中增加了在避雷器施加拉力试验过程中的局放试验,试验时取110 kV避雷器一支,轴向施加静态机械负荷,施加拉力分别为500 kg,750 kg,在此负荷状态下施加1.05倍Uc,测量避雷器的局部放电,试验的结果见表7。 表7局部放电试验结果轴向拉力/×9.8N0500750局部放电/pC454545试验结果表明,当轴向机械负荷加到额定破坏负荷时,局部放电没有变化,所以其机电性能是稳定的,达到了设计要求。3避雷器的

14、安装情况3.1避雷器的交接试验为了在安装前了解避雷器的性能,1996年10月2931日在华北电力科学研究院沙河高压试验大厅对北京中能瑞斯特公司的17只复合绝缘外套氧化锌避雷器进行了交接试验,试验项目包括避雷器的绝缘电阻测试、直流试验(直流1 mA电压的测量、75%直流1 mA电压下泄漏电流的测量)、交流试验等,试验结果合格。3.2避雷器安装位置的确定经过考虑研究,决定在直线绝缘子串和耐张绝缘子串上安装避雷器的方式,安装的具体位置见图。考虑到在直线杆塔(垂直绝缘子串)上避雷器安装位置紧临绝缘子串,此时绝缘子串上的电压分布是否会影响避雷器的电位分布,继而影响避雷器的泄漏电流,从而加速避雷器的劣化过

15、程,缩短避雷器的使用寿命,为此在沙河试验大厅进行了模拟试验,试验的结果显示,避雷器的这种安装位置对于避雷器的使用寿命影响很小,也基本不会影响带电试验的试验结果。考虑到杆塔的海拔高度、地形地貌以及避雷器的保护范围,并且考虑到水平排列的三相的中间相(B相)基本上不会遭受直击雷,而三角形排列的顶相由于易遭雷击而需安装避雷器(如130 号杆)等原则,在杆塔上装设了复合绝缘外套氧化锌避雷器,具体安装情况见表8。图 安装具体位置表8氧化锌避雷器具体安装情况杆塔号130132138140145151154157162166安装相别BCA、CA、CA、CA、CA、CAA、CA、C4避雷器的运行状况及分析4.1

16、避雷器带电试验17只避雷器在进行了交接试验后,1996年12月在寿遵线上安装,并于1996年12月进行了第一次带电测试,以积累避雷器带电试验的初始数据;然后在雷雨季开始后每个月进行了带电测试。从带电测试的结果看,避雷器运行正常。为了检验避雷器的性能,在雷雨季节过后,随机抽取了两只避雷器,然后带电拆下进行了试验,试验结果合格,也就是说避雷器在经过一个雷雨季节的运行后,性能良好。4.2避雷器动作情况截止1998年6月,避雷器总共动作了5次,其中1997年的雷雨季节期间动作了2次,都在140号杆塔的A相,1998年避雷器动作了3次,138号杆塔A相、140号杆塔A相,145号杆塔各一次。138号杆标

17、高约367.2 m,与139号杆档距达595 m,易遭雷击,140号杆标高达464.9 m,是这一段杆塔中海拔高度较高的杆塔,该号塔位于一高山大岭顶部,孤伶伶的,极易遭受雷击,该号塔曾于1992年遭受到一次雷击,145号杆高约428.2 m,也在一山顶上,易遭雷击。避雷器五次动作,使寿遵线五次受到避雷器的保护,避免了线路五次跳闸,所以安装避雷器的效果是明显的。4.3寿遵线的运行情况寿遵110 kV线路自从1996年12月安装避雷器以来,运行直到1998年6月,线路仅跳闸一次(1997年8月31日),事故点在117号塔,是由于杆塔遭受雷击造成的。该塔距129号杆12极杆塔,在安装的避雷器的保护范

18、围以外,所以反过来可以说明,避雷器的保护效果是明显的,即在避雷器的保护范围以内的杆塔均受到避雷器的保护,而在保护范围外的杆塔会遭受雷击。由于在1997年7、8月间,140号杆的避雷器动作了两次,保护了线路,鉴于这两次成功的经验,考虑到1996年117号也曾遭受雷击,而且这段线路中116号、117号、118号连续三极塔为单避雷线,地势高,山又陡,单避雷线改双避雷线的工作量特别大,所以于1997年11月7日在117号塔上也安装了三只合成绝缘外套氧化锌避雷器。运行表明,5次雷击跳闸比较集中,所以避雷器的安装位置是比较合理的,它避免了线路5次跳闸,避雷器的效果也是很明显的。综合比较寿遵这几年的运行情况,可以发现寿遵线自1996年12

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论