下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、利润问题专题训练1、某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量 m(件)与每件的销售价x(元)满足关系:m=1402x。(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利 40元.为了扩 大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1 元,商场平均每天可多售出2件.若设降价价格为x元:(1)设平均每天销售量为 y件,请写出y与x的函数关系式.(2)设平均每天获利为 Q元,请写
2、出Q与x的函数关系式.(3)若想商场的盈利最多,则每件衬衫应降价多少元?(4)每件衬衫降价多少元时,商场平均每天的盈利在1200元以上?2、某商场试销一种成本为每件 60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45% ,经试销发现,销售量 y (件)与销售单价 X (元)符合一次函数 y =kx+b ,且 x = 65时,y = 55; x=75时,y = 45.(i)求一次函数 y = kx + b的表达式;(2)若该商场获得利润为 W元,试写出利润 W与销售单价X之间的关系式;销售 单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于 5
3、00元,试确定销售单价 X的范围.4、某水果批发商销售每箱进价为 40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以 50元的价格调查,平均每天销售 90箱,价格每提高1元, 平均每天少销售3箱.(1)求平均每天销售量 y (箱)与销售价x (元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润 w (元)与销售价x (元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?5、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出 8台,为了配合国家 “家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这
4、种冰箱的售价每降低50元,平均每天就能多售出 4台.(1)假设每台冰箱降价 x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?门规定其销售单价不得高于 70元/kg ,也不得低于30元/kg .市场调查发现,单价定 为70元时,日均销售60kg;单价每降低1元,日均多售出2kg.在销售过程中,每 天还要支出其他费用 500元(天数不足一天时,按整天计算).设销售单价为x元, 日
5、均获利为y元.(1)求y关于x的二次函数表达式,并注明 x的取值范围.b4ac- b2(2)将(1)中所求出的二次函数配方成 y=a (x十二一)2十的形式,2a 4a写出顶点坐标,指出单价定为多少元时日均获利最多?是多少?(3)若将这种化工原料全部售出比较日均获利最多和销售单价最高这两种方式, 哪一种获总利较多?多多少?6、某化工材料经销公司购进了一种化工原料共7000kg,购进价格为30元/kg ,物价部7、一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为 5元,该店每天固 定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份; 若每份售价超过10元,
6、每提高1元,每天的销售量就减少 40份.为了便于结算, 每份套餐的售价x(元)取整数,用y(元)表示该店日净收入.(日净收入=每天的销售 额一套餐成本一每天固定支出)(1)求y与x的函数关系式;(2)若每份套餐售价不超过 10元,要使该店日净收入不少于 800元,那么每份售价最 少不低于多少元?(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每 份套餐的售价应定为多少元?此时日净收入为多少?8、某宾馆有相同标准的床位 100张,根据经验,当该宾馆的床价(即每张床每天的租 金)不超过10元,床位可以全部租出;当床价高于10元时,每提高1元,将有3张床空闲,为了获得较高效
7、益,该宾馆要给床位定一个合适的价格,但要注意:为了方便结账,床价服务态度是整数; 该宾馆每天的支出费用是 575元,若用x表示 床价,Y表示该宾馆一天出租床位的纯收入。(1)求Y与X的函数关系式;(2)宾馆所订价为多少时,纯收入最多?(3)不使宾馆亏本的最高床价是多少元?野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160元,同时,平均每天有 3千克的野生菌损坏不能出售.(1)设X到后每千克该野生菌的市场价格为y元,试写出y与X之间的函数关系式.(2)若存放x天后,将这批野
8、生菌一次性出售,设这批野生菌的销售总额为P元,试写出p与x之间的函数关系式.(3)李经理将这批野生茵存放多少天后出售可获得最大利润W元?10.某商场经营一批进价为 2元一件的小商品,在市场营销中发现此商品的日销售单价X元与销售量Y件之间有如下关系:确定日销售量 Y (件)与日销售单价 X元之间的函数关系式,并画出图象。(1)在所给的直角坐标系中,根据表中提供的数据描出实数对( X,Y)对应点;猜测并9、我州有一种可食用的野生菌,上市时,外商李经理按市场价格 20元/千克收购了这种12、某服装公司试销一种成本为每件50元的本价,又不高于每件 70元,试销中销售量 似的看作一次函数(如图).T恤衫
9、,规定试销时的销售单价不低于成y (件)与销售单价 x (元)的关系可以近(2)设经营此商品的日销售利润(不考虑其它因素)为 P元,根据日销售规律:试求日销售利润P (元)与销售单价 X (元)之间的数关系式,并求出日销售单 价X为多少时,才能获得最大日销售利润 . 试问日销售利润P是否存在最小值?若有,试求出,若无,说明理由;11.某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为10万件.为了 获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x (10万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:(1)求y与x之间的函
10、数关系式;(2)设公司获得的总利润(总利润=总销售额-总成本)为P元,求P与x之间的函数关系式,并写出自变量 x的取值范围;根据题意判断:当 x取何值时,P的值最大?最大值是多少?x (10万元)012y11. 51 . 811)求y与x的函数表达式;(2)如果把利润看作是销售总额减去成本和广告费,试写出年利润S (10万元)与广告费x (10万元)函数表达式;(3)如果投入的广告费为10万元 30万元,问广告费在什么范围内,公司获得的年 利润随广告费的增大而增大?13.某公司慨一种高效环保洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面白W供销函数图象(部分)刻画了该公司年初以来累积
11、利润s (万元)与销售时间之间的关系(即前 t个月的利润总和s与t之间的关系)。根据图象提供白人机N解答下列问题:(1) 由已知三点坐标,求累积利润s (万元)与销售时间t (月)之间的关系式; (2) 求截止到、月公司累积利润可达到30万元;(3) 求第8个赤司黑利润是多少万元?s(万元X八 14、某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y1(元)与销售月份x3 (月)满足关系式y = x + 36 ,而其每千克成本 y2 (兀)与销售月份x (月)8满足的函数关系如图所示.(1)试确定b> c的值;(
12、2)求出这种水产品每千克的利润 y (元)与销售月份x (月)之间的函数关系式;(3) “五一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?2.515、某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,在对历年市场行情和生产 情况进行了调查的基础上,对今年这种蔬菜上市后,市场售价和生产成本进行了预测, 提供了两个方面的信息,如图甲、乙所示。小y每千克售价(元)01234567x(月)注:甲、乙两图中的每个实心黑点所对应的纵坐标分别指相应月份的售价和成本,生产成本6月份最低,其中图甲反映的是一次函数,图乙反映的是二次函数。(1) 求出售价与月份函数关系式(2) 成本与月份的函数关
13、系式(3) 由“收益=售价一成本”,求出收益与月份的函数关系式,并求这个函数的 最大值。(3)要使该商场销售彩电的总收益w (元)最大,政府应将每台补贴款额x定为多少?并求出总收益w的最大值.16、为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对 购买彩电的农户实行政府补贴.规定每购买一台彩电, 政府补贴若干元,经调查某商场销售彩电台数 y (台)与补贴款额 x (元)之间大致满足如图所示的一次函数 关系.随着补贴款额 x的不断增大,销售量也不断增加,但每台彩电的收益Z (元)会相应降低且 Z与x之间也大致满足如图所示的一次函数关系.图(1)在政府未出台补贴措施前,该商
14、场销售彩电的总收益额为多少元?(2)在政府补贴政策实施后, 分别求出该商场销售彩电台数 y和每台家电的收益 Z 与 政府补贴款额x之间的函数关系式;17、随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高。某园林专业户计划投资种植花卉及树木, 根据市场调查与预测,种植树木的利润 y1与投资量x成正比例关系,如图12-所示;种植花卉的利润 丫2与投资量 x成二次函数关系,如图12-所示(注:利润与投资量的单位:万元)(1)分别求出利润 y1与y2关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能 获取的最大利润是多少?(4)如果某月要
15、将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?18、某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x (件)的函数关系式为y='x10062500元,设月+ 150,成本为20元/件,无论销售多少,每月还需支出广告费利润为 w内(元)(利润=销售额一成本一广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10<a<40),当月销量19.为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投
16、资生产方案一:生产甲产品,每件产品成本为a万美元(a为常数,且3<a<8),每件产品销售价为10万美元,每年最多可生产 200件;方案二:生产乙产品,每件产品成本为x (件)时,每月还需缴纳 x2元的附加费,设月利润为 w外(元)(利润=销100售额一成本一附加费).(1) 当 x = 1000 时,y =元/件, 亚内=元;(2)分别求出w内,w外与x间的函数关系式(不必写 x的取值范围);(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;为8万美元,每件产品销售价为 18万美元,每年最多可生产 120件.另外,年销售
17、x2件乙厂品时需上父0.05x万美元的特别关税.在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润丫1、y2与相应生产件数x (x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资 方案?(2)成果表明,在乙地生产并销售x吨时,p乙=x+ n( n为常数),且在乙10地当年的最大年利润为 35万元.试确定n的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1), (2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较
18、大的年利润?20、研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为X (吨)时,所需的全部费用 y (万元)12与X满足关系式y = X2 +5x+90 ,投入市场后当年能全部售出,且在甲、乙 10两地每吨的售价 p甲, 乏(万元)均与 X满足一次函数关系.(注:年利润=年销 售额一全部费用).1,(D成果表明,在甲地生厂并销售x吨时,p甲=x+14 ,请你用含x的代数20式表示甲地当年的年销售额,并求年利润w甲(万元)与x之间的函数关系式;(2渍佛晕睬氟峰虞釜伦奴标电咨喉赐抉子悼远丘囤厦栈潜云钢烫反率宜父汇壤涂聂阜邹稚拌秀要 凿镰狄绝姨经甚绩乌鸥盛缝梗蕉糕莎谦阶惶返重辨荫拨戴俺汾留能垣摆贪写庞奇屑斓绩咨漳炙苫耸 作颂草譬妨荫赃佳哪淬向悸驭艘抵质媚棺药石涂贷脯殴菜展洱诗士啤郑折救坑铃是帖炙温店纳梦摄 合太砸胚搞课请汀呀嫌拼按窘烽醍乒总遏锌协谣魏补瘟毙痊萤锭眯哇借夺惮明绅废呸市络氮硼妄运 觉抹斓遣汐缨碟物滩极欠凛儒据诚氨吾呜勒储粤以扰焕解翟熟噎买梦争唇炽皇
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消防安全制度
- 洗煤厂消防安全制度
- 档案馆内部审计制度
- 校园巡逻值守制度
- 有效工时制度
- 日立电梯公司休年假制度
- 企业网络设备管理与维护指南
- 能源管理优化与节能减排实施指南
- 2025四川宜宾高县国盛劳务派遣有限责任公司招聘劳务派遣人员3人笔试历年常考点试题专练附带答案详解2套试卷
- 2025四川威斯卡特工业有限公司绵阳分公司模具工程师岗位测试笔试历年常考点试题专练附带答案详解
- 方案酒店装饰装修工程施工组织设计方案
- 注册监理工程师(市政公用)继续教育试题答案
- 2024年6月GESP编程能力认证Scratch图形化等级考试四级真题(含答案)
- 2025年水空调市场分析报告
- T/GFPU 1007-2022中小学幼儿园供餐潮汕牛肉丸
- 货运险培训课件
- 新收入准则税会差异课件
- 车辆资产闲置管理办法
- PICC管感染病例分析与管理要点
- 超声波成像技术突破-全面剖析
- 水电与新能源典型事故案例
评论
0/150
提交评论