




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、推导公式:(a+b+c)/(sinA+sinB+sinC)=2R(其中,R为外接圆半径) 由正弦定理有 a/sinA=b/sinB=c/sinC=2R 所以 a=2R*sinA b=2R*sinB c=2R*sinC 加起来a+b+c=2R*(sinA+sinB+sinC)带入 (a+b+c)/(sinA+sinB+sinC)=2R*(sinA+sinB+sinC)/(sinA+sinB+sinC)=2R两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinB cos(A-B)=
2、cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 Sin2A=2SinA?CosA对数的性质及推导 用表示乘方,用log(a)(b)表示以a为底,b的对数 *表示乘号,/表示除号 定义式: 若an=b(a>0且a1) 则n=log(a)(b) 基本性质: 1.a(log(a)(b)=b 2.log(a)(MN)=log(a)
3、(M)+log(a)(N); 3.log(a)(M/N)=log(a)(M)-log(a)(N); 4.log(a)(Mn)=nlog(a)(M) 推导 1.这个就不用推了吧,直接由定义式可得(把定义式中的n=log(a)(b)带入an=b) 2. MN=M*N 由基本性质1(换掉M和N) alog(a)(MN)=alog(a)(M)*alog(a)(N) 由指数的性质 alog(a)(MN)=alog(a)(M)+log(a)(N) 又因为指数函数是单调函数,所以 log(a)(MN)=log(a)(M)+log(a)(N) 3.与2类似处理 MN=M/N 由基本性质1(换掉M和N) alo
4、g(a)(M/N)=alog(a)(M)/alog(a)(N) 由指数的性质 alog(a)(M/N)=alog(a)(M)-log(a)(N) 又因为指数函数是单调函数,所以 log(a)(M/N)=log(a)(M)-log(a)(N) 4.与2类似处理 Mn=Mn 由基本性质1(换掉M) alog(a)(Mn)=alog(a)(M)n 由指数的性质 alog(a)(Mn)=alog(a)(M)*n 又因为指数函数是单调函数,所以 log(a)(Mn)=nlog(a)(M) 其他性质: 性质一:换底公式 log(a)(N)=log(b)(N)/log(b)(a) 推导如下 N=alog(a
5、)(N) a=blog(b)(a) 综合两式可得 N=blog(b)(a)log(a)(N)=blog(a)(N)*log(b)(a) 又因为N=blog(b)(N) 所以 blog(b)(N)=blog(a)(N)*log(b)(a) 所以 log(b)(N)=log(a)(N)*log(b)(a)这步不明白或有疑问看上面的 所以log(a)(N)=log(b)(N)/log(b)(a) 性质二:(不知道什么名字) log(an)(bm)=m/n*log(a)(b) 推导如下 由换底公式lnx是log(e)(x),e称作自然对数的底 log(an)(bm)=ln(an)/ln(bn) 由基本
6、性质4可得 log(an)(bm)=n*ln(a)/m*ln(b)=(m/n)*ln(a)/ln(b) 再由换底公式 log(an)(bm)=m/n*log(a)(b) -(性质及推导完) 公式三: log(a)(b)=1/log(b)(a) 证明如下: 由换底公式log(a)(b)=log(b)(b)/log(b)(a)-取以b为底的对数,log(b)(b)=1 =1/log(b)(a) 还可变形得: log(a)(b)*log(b)(a)=1平方关系: sin2()+cos2()=1 tan2()+1=sec2() cot2()+1=csc2() ·商的关系: tan=sin/c
7、oscot=cos/sin ·倒数关系: tan·cot=1 sin·csc=1 cos·sec=1万能公式: sin=2tan(/2)/1+tan2(/2) cos=1-tan2(/2)/1+tan2(/2) tan=2tan(/2)/1-tan2(/2)常用的诱导公式有以下几组: 公式一: 设为任意角,终边相同的角的同一三角函数的值相等: sin(2k)sin cos(2k)cos tan(2k)tan cot(2k)cot 公式二: 设为任意角,+的三角函数值与的三角函数值之间的关系: sin()sin cos()cos tan()tan cot(
8、)cot 公式三: 任意角与-的三角函数值之间的关系: sin()sin cos()cos tan()tan cot()cot 公式四: 利用公式二和公式三可以得到-与的三角函数值之间的关系: sin()sin cos()cos tan()tan cot()cot 公式五: 利用公式一和公式三可以得到2-与的三角函数值之间的关系: sin(2)sin cos(2)cos tan(2)tan cot(2)cot 公式六: /2±及3/2±与的三角函数值之间的关系: sin(/2)cos cos(/2)sin tan(/2)cot cot(/2)tan sin(/2)cos c
9、os(/2)sin tan(/2)cot cot(/2)tan sin(3/2)cos cos(3/2)sin tan(3/2)cot cot(3/2)tan sin(3/2)cos cos(3/2)sin tan(3/2)cot cot(3/2)tan (以上kZ) 一般的最常用公式有: Sin(A+B)=SinA*CosB+SinB*CosA Sin(A-B)=SinA*CosB-SinB*CosA Cos(A+B)=CosA*CosB-SinA*SinB Cos(A-B)=CosA*CosB+SinA*SinB Tan(A+B)=(TanA+TanB)/(1-TanA*TanB) Tan
10、(A-B)=(TanA-TanB)/(1+TanA*TanB) 平方关系: sin2()+cos2()=1 tan2()+1=sec2() cot2()+1=csc2() ·积的关系: sin=tan*cos cos=cot*sin tan=sin*sec cot=cos*csc sec=tan*csc csc=sec*cot ·倒数关系: tan·cot=1 sin·csc=1 cos·sec=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, 三角函数恒等变形公式 ·两角
11、和与差的三角函数: cos(+)=cos·cos-sin·sin cos(-)=cos·cos+sin·sin sin(±)=sin·cos±cos·sin tan(+)=(tan+tan)/(1-tan·tan) tan(-)=(tan-tan)/(1+tan·tan) ·辅助角公式: Asin+Bcos=(A2+B2)(1/2)sin(+t),其中 sint=B/(A2+B2)(1/2) cost=A/(A2+B2)(1/2) ·倍角公式: sin(2)=2sin
12、3;cos=2/(tan+cot) cos(2)=cos2()-sin2()=2cos2()-1=1-2sin2() tan(2)=2tan/1-tan2() ·三倍角公式: sin(3)=3sin-4sin3() cos(3)=4cos3()-3cos ·半角公式: sin(/2)=±(1-cos)/2) cos(/2)=±(1+cos)/2) tan(/2)=±(1-cos)/(1+cos)=sin/(1+cos)=(1-cos)/sin ·降幂公式 sin2()=(1-cos(2)/2=versin(2)/2 cos2()=(1
13、+cos(2)/2=vercos(2)/2 tan2()=(1-cos(2)/(1+cos(2) ·万能公式: sin=2tan(/2)/1+tan2(/2) cos=1-tan2(/2)/1+tan2(/2) tan=2tan(/2)/1-tan2(/2) ·积化和差公式: sin·cos=(1/2)sin(+)+sin(-) cos·sin=(1/2)sin(+)-sin(-) cos·cos=(1/2)cos(+)+cos(-) sin·sin=-(1/2)cos(+)-cos(-) ·和差化积公式: sin+sin=
14、2sin(+)/2cos(-)/2 sin-sin=2cos(+)/2sin(-)/2 cos+cos=2cos(+)/2cos(-)/2 cos-cos=-2sin(+)/2sin(-)/2 ·其他: sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)+sin+2*(n-1)/n=0 cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)+cos+2*(n-1)/n=0以及 sin2()+sin2(-2/3)+sin2(+2/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 部分高等内容 ·
15、;高等代数中三角函数的指数表示(由泰勒级数易得): sinx=e(ix)-e(-ix)/(2i) cosx=e(ix)+e(-ix)/2 tanx=e(ix)-e(-ix)/ie(ix)+ie(-ix) 泰勒展开有无穷级数,ez=exp(z)1z/1!z2/2!z3/3!z4/4!zn/n! 此时三角函数定义域已推广至整个复数集。 ·三角函数作为微分方程的解: 对于微分方程组y=-y''y=y'''',有通解Q,可证明 Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。 补充:由相应的指数表示我们可以定义一种类似的函数双曲函数
16、,其拥有很多与三角函数的类似的性质,二者相映成趣。 特殊三角函数值 a030456090 sina01/22/23/21 cosa13/22/21/20 tana03/313None cotaNone313/30 三角函数的计算 幂级数 c0+c1x+c2x2+.+cnxn+.=cnxn(n=0.) c0+c1(x-a)+c2(x-a)2+.+cn(x-a)n+.=cn(x-a)n(n=0.) 它们的各项都是正整数幂的幂函数,其中c0,c1,c2,.及a都是常数,这种级数称为幂级数. 泰勒展开式(幂级数展开法): f(x)=f(a)+f'(a)/1!*(x-a)+f''
17、(a)/2!*(x-a)2+.f(n)(a)/n!*(x-a)n+. 实用幂级数: ex=1+x+x2/2!+x3/3!+.+xn/n!+. ln(1+x)=x-x2/3+x3/3-.(-1)k-1*xk/k+.(|x|<1) sinx=x-x3/3!+x5/5!-.(-1)k-1*x2k-1/(2k-1)!+.(-<x<) cosx=1-x2/2!+x4/4!-.(-1)k*x2k/(2k)!+.(-<x<) arcsinx=x+1/2*x3/3+1*3/(2*4)*x5/5+.(|x|<1) arccosx=-(x+1/2*x3/3+1*3/(2*4)*
18、x5/5+.)(|x|<1) arctanx=x-x3/3+x5/5-.(x1) sinhx=x+x3/3!+x5/5!+.(-1)k-1*x2k-1/(2k-1)!+.(-<x<) coshx=1+x2/2!+x4/4!+.(-1)k*x2k/(2k)!+.(-<x<) arcsinhx=x-1/2*x3/3+1*3/(2*4)*x5/5-.(|x|<1) arctanhx=x+x3/3+x5/5+.(|x|<1) - 傅立叶级数(三角级数) f(x)=a0/2+(n=0.)(ancosnx+bnsinnx) a0=1/(.-)(f(x)dx an=
19、1/(.-)(f(x)cosnx)dx bn=1/(.-)(f(x)sinnx)dx 注意:正切也可以表示为“Tg”如:TanA=TgA Sin2a=2SinaCosa Cos2a=Cosa2-Sina2 =1-2Sina2 =2Cosa2-1 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(
20、1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=(1-cosA)/2) sin(A/2)=-(1-cosA)/2) cos(A/2)=(1+cosA)/2) cos(A/2)=-(1+cosA)/2) tan(A/2)=(1-cosA)/(1+cosA) tan(A/2)=-(1-cosA
21、)/(1+cosA) ctg(A/2)=(1+cosA)/(1-cosA) ctg(A/2)=-(1+cosA)/(1-cosA) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云计算技术服务采购协议
- 车辆归属协议书范本
- 配件维修报价合同协议
- 配电箱供货协议合同协议版
- 专属性地产租赁协议
- 互联网广告资源置换与合作协议
- 车祸赔付后协议书范本
- 转让咖啡吧台合同协议
- 跑车租赁维修合同协议
- 沟通机制协议书
- 初二下学期期中家长会发言稿
- 福建省福州市2025年初中毕业班教学质量检测二生物学试卷(无答案)
- 山东省济南市东南片区2024-2025学年七年级下学期期中考试英语试题
- 2025-2030中国城市规划行业深度分析及发展前景与发展战略研究报告
- 2025年全国焊工作业人员职业技能理论考试练习题库(900题)含答案
- 道岔区无砟轨道我国高速铁路道岔区采用的无砟轨道主要有长枕埋
- 《行政法与行政诉讼法》课件各章节内容-第二十六章 行政赔偿及诉讼
- 【9物一模】2025年安徽省合肥市45中(橡树湾)中考一模物理试卷
- 计算机系统规划与管理考试内容试题及答案
- 反三违安全知识培训课件
- 粤语高智商测试题及答案
评论
0/150
提交评论