




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上第一章 集合与函数概念§11集合教学目标: (1)了解集合的含义,体会元素与集合的属于关系; (2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;教学重点.难点 重点:集合的含义与表示方法. 难点:表示法的恰当选择. 1.1.1(一)集合的有关概念定义:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。2.表示方法:集合通常用大括号 或大写的拉丁字母A,B,C表示, 而元素用小写的拉丁字母a,b,c表
2、示。3.集合相等:构成两个集合的元素完全一样。4.元素与集合的关系:(元素与集合的关系有“属于”及“不属于两种)若a是集合A中的元素,则称a属于集合A,记作aA;若a不是集合A的元素,则称a不属于集合A,记作aA。5.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;N内排除0的集.整数集,记作Z;有理数集,记作Q;实数集,记作R;6.关于集合的元素的特征 确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。 如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。“中国古代四大发明” (造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比
3、较大 的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的. 互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。. 如:方程(x-2)(x-1)2=0的解集表示为1,-2,而不是1,1,-2 无序性:即集合中的元素无顺序,可以任意排列、调换。练1:判断以下元素的全体是否组成集合,并说明理由:大于3小于11的偶数;我国的小河流;非负奇数; 某校2011级新生; 血压很高的人;7.元素与集合的关系:(元素与集合的关系有“属于”及“不属于”两种)若a是集合A中的元素,则称a属于集合A,记作aA;若a不是集合A的元素,则称a不属于集合A,记作aA。 例如,我们A表示
4、“120以内的所有质数”组成的集合,则有3A,4A,等等。练:A=2,4,8,16,则4A,8A,32A.8. 空集:定义9. 集合的分类观察下列三个集合的元素个数1. 4.8, 7.3, 3.1, -9; 2. xR0<x<3; 3. xRx2+1=0由此可以得到 集合的分类(二)例题讲解:例1用“”或“”符号填空: 8 N; 0 N; -3 Z; Q; 练:5页题例2已知集合P的元素为, 若2P且-1P,求实数m的值。 练:给出下面四个关系:R,0.7Q,00,0N,其中正确的个数是:( )A4个 B3个 C2个 D1个(2)求集合2a,a2+a中元素应满足的条件?(3)若t,
5、求t的值.1.1.2一、集合的表示方法列举法:把集合中的元素一一列举出来, 并用花括号“”括起来表示集合的方法叫列举法。如:1,2,3,4,5,x2,3x+2,5y3-x,x2+y2,;说明:书写时,元素与元素之间用逗号分开;一般不必考虑元素之间的顺序;在表示数列之类的特殊集合时,通常仍按惯用的次序;集合中的元素可以为数,点,代数式等;列举法可表示有限集,也可以表示无限集。当元素个数比较少时用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示。对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集用列举法
6、表示为例1用列举法表示下列集合:(1) 小于5的正奇数组成的集合;(2) 能被3整除而且大于4小于15的自然数组成的集合;(3) 从51到100的所有整数的集合;(4) 小于10的所有自然数组成的集合;(5) 方程的所有实数根组成的集合;描述法:用集合所含元素的共同特征表示集合的方法,称为描述法。方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。一般格式:如:x|x-3>2,(x,y)|y=x2+1,x|直角三角形,;说明:描述法表示集合应注意集合的代表元素,如(x,y)|y= x2+3x+2与 y|y= x2
7、+3x+2是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:整数,即代表整数集Z。辨析:这里的 已包含“所有”的意思,所以不必写全体整数。写法实数集,R也是错误的。用符号描述法表示集合时应注意:、弄清元素所具有的形式(即代表元素是什么)是数还是点、还是集合、还是其他形式?、元素具有怎么的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑。例2用描述法表示下列集合:(1) 由适合x2-x-2>0的所有解组成的集合;(2) 到定点距离等于定长的点的集合;(3) 方程的所有实数根组成的集合(4) 由大于10小于20的所有整数组成的集合。
8、说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意, 一般集合中元素较多或有无限个元素时,不宜采用列举法。 课本P7 例1例21用适当的方法表示集合:大于0的所有奇数2集合Ax|Z,xN,则它的元素是 。3.判断下列两组集合是否相等? (1)A=x|y=x+1与B=y|y=x+1; (2)A=自然数与B=正整数 1.2 集合间的基本关系教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。教学重点:集合的交集
9、与并集、补集的概念; 教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”; 1.2.1 子集:对于两个集合A,B,如果集合A的任何一个元素都是集合B的元素,我们说这 两个集合有包含关系,称集合A是集合B的子集(subset)。 记作: 读作:A包含于B,或B包含AB A表示: 当集合A不包含于集合B时,记作A?B(或B?A) 用Venn图表示两个集合间的“包含”关系:2.真子集定义:若集合,但存在元素,则称集合A是集合B的真子集。 记作:A B(或B A) 读作:A真包含于B(或B真包含A)3.集合相等 定义:如果A是集合B的子集,且集合B是集合A的子集,则集合A与集合B 中的
10、元素是一样的,因此集合A与集合B相等,即若,则。 如:A=x|x=2m+1,mZ,B=x|x=2n-1,nZ,此时有A=B。4.空集定义:不含有任何元素的集合称为空集。记作:用适当的符号填空: ; 0 ; ; 5.几个重要的结论: 空集是任何集合的子集;对于任意一个集合A都有A。 空集是任何非空集合的真子集; 任何一个集合是它本身的子集; 对于集合A,B,C,如果,且,那么。练习 2 N; N; A; 已知集合Ax|x3x20,B1,2,Cx|x<8,xN,则 A B; A C; 2 C; 2 C说明:注意集合与元素是“属于”“不属于”的关系,集合与集合是“包含于”“不包含于”的关系;在
11、分析有关集合问题时,要注意空集的地位。结论:一般地,一个集合元素若为n个,则其子集数为2n个,其真子集数为2n-1个, 特别地,空集的子集个数为1,真子集个数为0。1.2.2 集合间的基本运算考察下列集合,说出集合C与集合A,B之间的关系:(1),;(2),;1.并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与集合B 的并集,即A与B的所有部分, 记作AB, 读作:A并B 即AB=x|xA或xB。 Venn图表示:2. 交集定义:一般地,由属于集合A且属于集合B的所有元素组成的集合,叫作集合A、B的交集(intersection set),记作:AB 读作:A交B 即:
12、ABx|xA,且xB(阴影部分即为A与B的交集)Venn图表示:常见的五种交集的情况:ABA(B)B AA B BA说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集3. 全集、补集概念及性质:全集的定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么 就称这个集合为全集,记作U,是相对于所研究问题而言的一个相对概念。补集的定义:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合,叫作集 合A相对于全集U的补集, 记作:,读作:A在U中的补集,即 Venn图表示:(阴影部分即为A在全集U中的补集)说明:补集的概念必须要有全集的限制高一数学必修1集合单元综合练习1、U1,2,3,4,5,若AB2,(CUA)B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国半光型环氧聚酯粉末涂料行业市场前景预测及投资价值评估报告
- JAVASwing组件使用试题及答案
- 知识产权局复工协议书
- 杜绝反邪教协议书
- 2025年浙江省台州市黄岩区中考二模科学试题
- 无抵押担保协议书
- 收购糖料蔗协议书
- 苏泊尔赔偿协议书
- 学校寄就业协议书
- 签约直播合伙人协议书
- 多彩的非洲文化 - 人教版课件
- 2025年年中考物理综合复习(压轴特训100题55大考点)(原卷版+解析)
- -《经济法学》1234形考任务答案-国开2024年秋
- 2025-2030全球及中国货运保险行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- TCGIA0012017石墨烯材料的术语定义及代号
- 2025年江苏省南通市海门市海门中学高三最后一卷生物试卷含解析
- 钢结构与焊接作业指导书
- 隔离防护培训课件
- 吉林省长春市2025届高三下学期4月三模试题 英语 含解析
- 医院退休返聘协议书10篇
- 第五单元:含长方形和正方形的不规则或组合图形的面积专项练习-2023-2024学年三年级数学下册典型例题系列(解析版)人教版
评论
0/150
提交评论