spss的试题答案结果_第1页
spss的试题答案结果_第2页
spss的试题答案结果_第3页
spss的试题答案结果_第4页
spss的试题答案结果_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 统计复习题目一.某公司管理人员为了解某化妆品在一个城市的月销售量Y(单位:箱)与该城市中适合使用该化妆品的人数(单位:千人)以及他们 人均月收入(单位:元)之间的关系,在某个月中对15个城市做调查,得上述各量的观测值如表A1所示.假设Y与,之间满足线性回归关系 其中独立同分布于.(1)求回归系数的最小二乘估计值和误差方差的估计值,写出回归方程并对回归系数作解释;analyze-regression-linear,y to dependent,x1 x2 to indepents ,statistics-confidence intervals,save-unstandardized. Pre

2、diction individual-individual.ok CoefficientsaModelUnstandardized CoefficientsStandardized CoefficientstSig.95% Confidence Interval for BBStd. ErrorBetaLower BoundUpper Bound1(Constant)3.4532.4311.420.181-1.8438.749x1.496.006.93481.924.000.483.509x2.009.001.1089.502.000.007.011a. Dependent Variable:

3、 yANOVAbModelSum of SquaresdfMean SquareFSig.1Regression53844.716226922.3585.679E3.000aResidual56.884124.740Total53901.60014a. Predictors: (Constant), x2, x1b. Dependent Variable: y回归系数的最小二乘估计值和误差方差的估计值分别为:3.453,0.496,0.009和=4.740. 回归方程为y=0.496*x1+0.009*x2+3.453 回归系数解释:3.453可理解为化妆品的月基本销售量,当人均月收入固定时,

4、适合使用该化妆品的人数每提高一个单位,月销售量Y将增加0.496个单位;当适合使用该化妆品的人数固定时,人均月收入每提高一个单位,月销售量 Y将增加0.009个单位(2)求出方差分析表,解释对线性回归关系显著性检验的结果.求复相关系数的平方的值并解释其意义;ANOVAbModelSum of SquaresdfMean SquareFSig.1Regression53844.716226922.3585.679E3.000aResidual56.884124.740Total53901.60014a. Predictors: (Constant), x2, x1b. Dependent Var

5、iable: yModel SummaryModelRR SquareAdjusted R SquareStd. Error of the Estimate1.999a.999.9992.17722a. Predictors: (Constant), x2, x1由于P值=0.000<0.05,所以回归关系显著.值=0.999,说明Y与,之间的线性回归关系是高度显著的(3)分别求和的置信度为的置信区间;coefficients的后面部分.和的置信度为的置信区间分别为(0.483,0.509),(0.007,0.011)(4)对,分别检验人数及收入对销量Y的影响是否显著;由于系数,对应的检

6、验P值分别为0.000,0.000都小于0.05,所以适合使用该化妆品的人数和人均月收入 对月销售量Y的影响是显著的(5)该公司欲在一个适宜使用该化妆品的人数,人均月收入的新城市中销售该化妆品,求其销量的预测值及置信为0.95的置信区间.Y的预测值及置信度为0.95的置信区间分别为:135.5741和(130.59977,140.54305)在数据表中直接可以看见二、某班42名男女学生全部参加大学英语四级水平考试,数据如下:(数据表为A2)不合格1合格2男生1262女生286问男女生在英语学习水平上有无显著差异?单击weight cases-weight cases by-x, ok, ana

7、lyze-descriptive statistics-crosstabs,(列联表分析)sex to rows,score to column, exact-exact, statistics chi-square ,ok.Chi-Square TestsValuedfAsymp. Sig. (2-sided)Exact Sig. (2-sided)Exact Sig. (1-sided)Point ProbabilityPearson Chi-Square7.721a1.005.010.010Continuity Correctionb5.5781.018Likelihood Ratio7

8、.3691.007.037.010Fisher's Exact Test.010.010Linear-by-Linear Association7.537c1.006.010.010.010N of Valid Cases42a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 2.67.b. Computed only for a 2x2 tablec. The standardized statistic is 2.745.原假设不显著,看这个(Asymp. Sig. (2

9、-sided))。Pearson Chi-Square(卡方检验) and Likelihood Ratio(似然比) all <0.05 男女生在英语学习水平上差异是显著的三、将一块耕地等分为24个小区,今有3种不同的小麦品种(d)和2种不同的肥料(B1,B2),现将各小麦品种与各种肥料进行搭配,对每种搭配都在4个小区上试验,测得每个小区产量的数据如表A3所示.(1)假设所给数据服从方差分析模型,建立方差分析表,A与B的交互效应在下是否显著?3.0Analyze-general linear model-univariate,x to dependent variable,a and

10、b to fixed factor, ok Tests of Between-Subjects EffectsDependent Variable:xSourceType III Sum of SquaresdfMean SquareFSig.Corrected Model263.333a552.66721.545.0003650.66713650.6671.493E3.000a190.333295.16738.932.000b54.000154.00022.091.000a * b19.00029.5003.886.040Error44.000182.444Total3958.00024Co

11、rrected Total307.33323a. R Squared = .857 (Adjusted R Squared = .817)由于交互效应检验P值=0.04<0.05,所以小麦(A)与肥料(B)之间的交互效应是显著的.(2)若A与B的交互效应显著,分别就B的各水平,给出在A的各水平上的均值的置信度为0.95 的置信区间以及两两之差的置信度不小于0.95的Bonferroni同时置信区间.3.1.Analyze-general linear model-univariate,x to dependent variable,a to fixed factor,post hoc-a

12、 to post hoc tests for, bonferroni,options-a to display means for.ok aDependent Variable:xaMeanStd. Error95% Confidence IntervalLower BoundUpper Bound19.000.6877.44510.555210.000.6878.44511.555313.500.68711.94515.055Multiple ComparisonsxBonferroni(I) a(J) aMean Difference (I-J)Std. ErrorSig.95% Conf

13、idence IntervalLower BoundUpper Bound12-1.00.972.991-3.851.853-4.50*.972.004-7.35-1.65211.00.972.991-1.853.853-3.50*.972.017-6.35-.65314.50*.972.0041.657.3523.50*.972.017.656.35Based on observed means. The error term is Mean Square(Error) = 1.889.*. The mean difference is significant at the .05 leve

14、l.固定肥料的水平,的置信度为0.95的置信区间分别为(7.445,10.555),(8.445,11.555),(11.945,15.055);的置信度不小于0.95的Bonferroni同时置信区间分别为(-3.85,1.85),(-7.35,-1.65),(-6.35,-0.65)2. Analyze-general linear model-univariate, x to dependent variable,a to fixed factor,post hoc-a to post hoc tests for,bonferroni,options-a to display means

15、 for,.ok aDependent Variable:xaMeanStd. Error95% Confidence IntervalLower BoundUpper Bound110.500.8668.54112.459212.000.86610.04113.959319.000.86617.04120.959Multiple ComparisonsxBonferroni(I) a(J) aMean Difference (I-J)Std. ErrorSig.95% Confidence IntervalLower BoundUpper Bound12-1.501.225.755-5.09

16、2.093-8.50*1.225.000-12.09-4.91211.501.225.755-2.095.093-7.00*1.225.001-10.59-3.41318.50*1.225.0004.9112.0927.00*1.225.0013.4110.59Based on observed means. The error term is Mean Square(Error) = 3.000.*. The mean difference is significant at the .05 level.固定肥料的水平,的置信度为0.95的置信区间分别(8.541,12.459),(10.0

17、41,13.959),(17.041,20.959)的置信度不小于0.95的Bonferroni同时置信区间分别为(-5.09,2.09),(-12.09,-4.91),(-10.59,-3.41)四、数据表A4给出了我国31个省市自治区的的经济发展状况,所考察的八个指标为:地区生产总值;:居民消费水平;:基本建设投资;职工平均工资; :居民消费价格指数;:商品零售价格指数;:货物周转量;:工业总产值。(1)从样本相关系数矩阵出发做主成分分析,求各主成分的贡献率及前三个主成分的累计贡献率;求出前三个主成分的表达式。Analyze-data-reduction-factor将八个成分全部选入va

18、riables,extraction-extract-number of factors-8,okTotal Variance ExplainedComponentInitial EigenvaluesExtraction Sums of Squared LoadingsTotal% of VarianceCumulative %Total% of VarianceCumulative %13.74146.76146.7613.74146.76146.76122.39429.92676.6872.39429.92676.6873.7389.23185.918.7389.23185.9184.4

19、806.00691.9235.4375.46697.3896.1421.77699.1657.060.74599.9108.007.090100.000Extraction Method: Principal Component Analysis.Component MatrixaComponent12345678地区生产总值.814.556-.116.031-.035-.028-.094-.061居民消费水平.766-.493.195-.076.212-.285.005.006基本建设投资.785.558-.141.085-.083-.013.196.003职工平均工资.604-.572.0

20、16.465.264.149-.002-.002居民消费价格指数-.314.599.666.298-.091-.051-.007.001商品零售价格指数-.397.721-.006-.131.552.029.013.000货物周转量.761-.181.458-.380-.005.185.017-.004工业总产值.823.540-.116.020-.042.019-.109.058Undefined error #11401 - Cannot open text file "F:SPSSspsslangenspss.err": No such file or direa.

21、8 components extracted.各主成分的贡献率分别为46.761%,29.926%,9.231%,6.006%,5.466%,1.776%,0.745%,0.09%.前三个主成分的累计贡献率为85.918%.y1=0.814x1+0.766x2+0.785x3+0.604x4-0.314x5-0.397x6+0.761x7+0.823x8y2=0.556x1-0.493x2+0.558x3-0.572x4+0.599x5+0.721x6-0.181x7+0.540x8(2)本相关系数矩阵出发做因子分析,提取三个公共因子F1,F2,F3,说明每个公共因子各由哪些指标解释,并解释每

22、个公共因子的具体意义。1.求出三个公共因子F1,F2,F3的表达式。Analyze-data-reduction-factor将八个成分全部选入variables,extraction-extract-number of factors-3,descriptives-correlation matrix- coefficients, rotation-method- varimax, scores-save as variables,display factor score coefficient matrix, okComponent Score Coefficient MatrixComp

23、onent123地区生产总值.341-.075-.062居民消费水平-.031.380.092基本建设投资.343-.097-.089职工平均工资-.036.258-.125居民消费价格指数-.085.220.910商品零售价格指数.114-.254.157货物周转量-.021.468.460工业总产值.339-.069-.065Undefined error #11401 - Cannot open text file "F:SPSSspsslangenspss.err": No such file or dire Undefined error #11408 - Can

24、not open text file "F:SPSSspsslangenspss.err": No such file or direF1=0.341x1-0.031x2+0.343x3-0.036x4-0.085x5+0.114x6-0.021x7+0.339x82.根据三个公共因子F1,F2,F3的得分,对31个省市自治区进行分层聚类分析,要求样本间用欧氏平方距离,类间用类内平均连接法,如果聚为4类,写出每一类成员。Analyze-classify-hierarchical cluster,F1.F2.F3 to variables,地区 to label cases

25、by, statistics-cluster member ship-single solution-number of cluster-4. method-cluster method-median clustering,save- cluster member ship-single solution-number of cluster-4.ok 分类在表的最后一列可以读出。五、表B1给出了煤净化过程的一组数据,Y为净化后煤溶液中所含杂质的重量,这是衡量净化效率的指标,X1表示输入净化过程的溶液所含的煤与杂质的比,X2是溶液的PH值,X3是溶液的流量。假设Y与,和之间满足线性回归关系 其中

26、独立同分布于.(1) 求回归系数的最小二乘估计值和误差方差的估计值,写出回归方程并对回归系数作解释;analyze-regression-linear,y to dependent,x1 x2 x3to independent ,statistics-confidence intervals, save-unstandardized. Prediction individual-individual .ok CoefficientsaModelUnstandardized CoefficientsStandardized CoefficientstSig.95% Confidence Inte

27、rval for BBStd. ErrorBetaLower BoundUpper Bound1(Constant)397.08762.7576.327.000252.370541.805x1-110.75014.762-.841-7.502.000-144.792-76.708x215.5834.921.3553.167.0134.23626.931x3-.058.026-.255-2.274.053-.117.001a. Dependent Variable: yANOVAbModelSum of SquaresdfMean SquareFSig.1Regression31156.0243

28、10385.34123.827.000aResidual3486.8928435.862Total34642.91711a. Predictors: (Constant), x3, x2, x1b. Dependent Variable: y回归系数的最小二乘估计值和误差方差的估计值分别为:397.087,-110.75,15.583,-0.058和435.862y=-110.750*x1+15.583*x2-0.058*x3+397.087回归系数解释:397.087可理解为杂质的基本重量,当PH值和溶液流量固定时,输入净化过程的溶液所含的煤与杂质的比 每提高一个单位,杂质的重量 Y将减少1

29、10.75个单位;当输入净化过程的溶液所含的煤与杂质的比和溶液流量固定时,PH值每提高一个单位,杂质的重量Y将增加15.583个单位;当输入净化过程的溶液所含的煤与杂质的比和PH值固定时,溶液流量每提高一个单位,杂质的重量Y将减少0.058个单位。(2)求出方差分析表,解释对线性回归关系显著性检验的结果.求复相关系数的平方的值并解释其意义;ANOVAbModelSum of SquaresdfMean SquareFSig.1Regression31156.024310385.34123.827.000aResidual3486.8928435.862Total34642.91711a. Pr

30、edictors: (Constant), x3, x2, x1b. Dependent Variable: yModel SummaryModelRR SquareAdjusted R SquareStd. Error of the Estimate1.948a.899.86220.87730a. Predictors: (Constant), x3, x2, x1由于P值=0.000<0.05,所以回归关系显著.值=0.899,说明Y与,之间的线性回归关系是显著的(3)分别求,和的置信度为的置信区间;coefficients的后面部分,和的置信度为的置信区间分别为(-144.792,

31、-76.708),(4.236,26.931),(-0.117,0.001)(4)对,分别检验, 和对Y的影响是否显著;由于系数,对应的检验P值分别为0.000,0.013都小于0.05,所以和 对Y的影响是显著的.而对应的检验P值为0.053大于0.05,所以对Y的影响是不显著的。(5)若有,的值,求Y的预测值及置信度为0.95的置信区间.Y的预测值及置信度为0.95的置信区间分别为:218.64484和(166.93687,270.35282)在数据表中直接可以看见六、考察四种不同催化剂对某一化工产品得率的影响,在四种不同催化剂下分别做了6次实验,得数据如表B2所示.假定各种催化剂下产品的

32、得率服从同方差的正态分布,试在下,检验四种不同催化剂对该化工产品的得率有无显著影响.要写出方差分析表。方差分析表:Analyzecompare means -one-way anova,x to dependent list,a to factor ,okANOVAxSum of SquaresdfMean SquareFSig.Between Groups.0063.0021.306.300Within Groups.03020.001Total.03623由于检验P值=0.300>0.05,所以认为四种不同催化剂对该化工产品的得率在水平0.05下无显著差异。 七、为了研制一种治疗枯草

33、热病的药物,将两种成分(A和B)各按三种不同剂量(低、中、高)混合,将36位自愿受试患者随机分为9组,每组4人服用各种剂量混合下的药物,记录其病情缓解的时间(单位:小时)数据如表B3所示.(1)假设所给数据服从方差分析模型,建立方差分析表,A与B的交互效应在下是否显著?B3.0.Analyze-general linear model-univariate,x to dependent variable,a and b to fixed factor, okTests of Between-Subjects EffectsDependent Variable:xSourceType III S

34、um of SquaresdfMean SquareFSig.Corrected Model373.105a846.638774.910.0001857.61011857.6103.086E4.000a220.0202110.0101.828E3.000b123.660261.8301.027E3.000a * b29.42547.356122.227.000Error1.62527.060Total2232.34036Corrected Total374.73035a. R Squared = .996 (Adjusted R Squared = .994)交互效应检验P值=0.000<

35、;0.05,所以成分 (A)与成分(B)之间的交互效应是显著的(2)若A与B 的交互效应显著,分别就A的各水平,给出在B的各水平上的均值的置信度为0.95 的置信区间以及两两之差的置信度不小于0.95的Bonferroni同时置信区间.B3.1.Analyze-general linear model-univariate,x to dependent variable,a to fixed factor,post hoc-a to post hoc tests for, bonferroni,options-a to display means for.okbDependent Variab

36、le:xbMeanStd. Error95% Confidence IntervalLower BoundUpper Bound12.475.1102.2262.72424.600.1104.3514.84934.575.1104.3264.824Multiple ComparisonsxBonferroni(I) b(J) bMean Difference (I-J)Std. ErrorSig.95% Confidence IntervalLower BoundUpper Bound12-2.1250*.15546.000-2.5810-1.66903-2.1000*.15546.000-2

37、.5560-1.6440212.1250*.15546.0001.66902.58103.0250.155461.000-.4310.4810312.1000*.15546.0001.64402.55602-.0250.155461.000-.4810.4310Based on observed means. The error term is Mean Square(Error) = .048.*. The mean difference is significant at the .05 level.固定成分(A)的水平,的置信度为0.95的置信区间分别为(2.226,2.724),(4.

38、351,4.849),(4.326,4.824);的置信度不小于0.95的Bonferroni同时置信区间分别为(-2.581,-1.669),(-2.556,-1.644),(-0.431,0.481)B3.2.Analyze-general linear model-univariate,x to dependent variable,a to fixed factor,post hoc-a to post hoc tests for, bonferroni,options-a to display means for.okbDependent Variable:xbMeanStd. Er

39、ror95% Confidence IntervalLower BoundUpper Bound15.450.1275.1625.73828.925.1278.6379.21339.125.1278.8379.413Multiple ComparisonsxBonferroni(I) b(J) bMean Difference (I-J)Std. ErrorSig.95% Confidence IntervalLower BoundUpper Bound12-3.4750*.18028.000-4.0038-2.94623-3.6750*.18028.000-4.2038-3.1462213.

40、4750*.18028.0002.94624.00383-.2000.18028.888-.7288.3288313.6750*.18028.0003.14624.20382.2000.18028.888-.3288.7288Based on observed means. The error term is Mean Square(Error) = .065.*. The mean difference is significant at the .05 level.固定成分(A)的水平,的置信度为0.95的置信区间分别为(5.162,5.738),(8.637,9.213),(8.837,

41、9.413);的置信度不小于0.95的Bonferroni同时置信区间分别为(-4.0038,-2.9462),(-4.2038,-3.1462),(-0.7288,0.3288)B3.3.Analyze-general linear model-univariate,x to dependent variable,a to fixed factor,post hoc-a to post hoc tests for, bonferroni,options-a to display means for.okbDependent Variable:xbMeanStd. Error95% Confi

42、dence IntervalLower BoundUpper Bound15.975.1305.6826.268210.275.1309.98210.568313.250.13012.95713.543Multiple ComparisonsxBonferroni(I) b(J) bMean Difference (I-J)Std. ErrorSig.95% Confidence IntervalLower BoundUpper Bound12-4.3000*.18333.000-4.8378-3.76223-7.2750*.18333.000-7.8128-6.7372214.3000*.1

43、8333.0003.76224.83783-2.9750*.18333.000-3.5128-2.4372317.2750*.18333.0006.73727.812822.9750*.18333.0002.43723.5128Based on observed means. The error term is Mean Square(Error) = .067.*. The mean difference is significant at the .05 level.固定成分(A)的水平,的置信度为0.95的置信区间分别为(5.682,6.268),(9.982,10.568),(12.9

44、57,13.543);的置信度不小于0.95的Bonferroni同时置信区间分别为(-4.8378,-3.7622),(-7.8128,-6.7372),(-3.5128,-2.4372). 八、表B4给出了1991年我国30个省、区、市城镇居民的月平均消费数据,所考察的八个指标如下(单位均为元/人):人均粮食支出;:人均副食支出;:人均烟酒茶支出;人均其他副食支出; :人均衣着商品支出;:人均日用品支出;:人均燃料支出;:人均非商品支出(1)从出发做主成分分析,求各主成分的贡献率及前两个主成分的累计贡献率; Analyze-data-reduction-factor将八个成分全部选入var

45、iables,extraction-extract-number of factors-2,okTotal Variance ExplainedComponentInitial EigenvaluesExtraction Sums of Squared LoadingsTotal% of VarianceCumulative %Total% of VarianceCumulative %13.09638.70438.7043.09638.70438.70422.36729.59068.2942.36729.59068.2943.92011.50079.7944.7068.82488.6185.

46、4986.23194.8486.2302.87497.7227.1311.63599.3578.051.643100.000Extraction Method: Principal Component Analysis.第一,第二,第八主成分的贡献率分别为:38.704%,29.59%,11.5%,8.824%,6.231%,2.874%,1.635%,0.635%. 前两个主成分的累计贡献率68.294%.(2)求出前两个主成分并解释其意义.Component MatrixaComponent12x1.439-.371x2.914-.058x3-.033.731x4.447.828x5.038.885x6.867.207x7.558-.401x8.896-.134Undefined error #11401 - Cannot open text file "C:Program Files

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论