版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Intelligent controls for electro-hydraulic poppet valves XX XXXX1512XXXX(对电液提升阀的智能控制研究)Patrick Opdenbosch, Nader Sadegh, Wayne BookThe Georgia Institute of Technology, Atlanta, USAcontents4.CONTROL LAW AND STABILITY1.ABSTRACT5.ELECTRONIC CONTROL OF HYDRAULIC PRESSURE2.INTRODUCTION6.CONCLUSIONS3.CONT
2、ROL OBJECTIVE AND INPUT-STATE APPROXIMATORTo DO:To DO: This paper describes an intelligent controller that combines an auto-calibration state-trajectory-based control method with a simple algorithm that enables fault detection. More specifically, the proposed control algorithm is designed to learn t
3、he inverse input-state map of an Electro-Hydraulic Poppet Valve (EHPV) with the aid of a Nodal Link Perceptron Network (NLPN). While in operation, the controller enforces the tracking of a desired hydraulic supply pressure profile at the same time that it learns the inverse input-state calibration m
4、ap and monitors the latter for deviations from prescribed bounds. 本文描述了一个整合了以自校正状态轨迹为基础的控制方法的智能控制器,并且这种智能控制方法可以进行误差检测。更具体的说,期望得到的控制算法是为了研究带有节点感知器网络(NLPN)的电液提升阀(EHPV)的反向输入状态映射。在试验中,控制器可以追踪所追踪所期望的供液压力期望的供液压力数据的同时,得到反向输入状态校正映射并且控制其偏差在偏差在规定的范围内规定的范围内。ABSTRACTINTRODUCTIONThe EHPV considered herein is sho
5、wn in Fig. 1.Fig. 1. The Electro-Hydraulic Poppet Valve (EHPV) PQK/vThe EHPVs performance is characterized by its flow coefficient or conductance.The control algorithm presented herein simultaneously learns the valves conductance and uses this knowledge to control the valve while achieving the track
6、ing of a desired supply pressure profile. INTRODUCTION First, there would be no need to obtain extensive offline Kv calibrations for valves of the same capacity/size. Second, it enables the inclusion of degradation monitoring and fault detection schemes by observing the valves deviation from expecte
7、d performance.Fig. 1. The Electro-Hydraulic Poppet Valve (EHPV) The contribution of this paper is the presentation of an essen-tially model-free control law for the EHPV, that tunes a simple adaptive look-up table with the inverse input-state calibration map of the EHPV, and the inclusion of fault d
8、etection while the EHPV is used in a pressure control application. CONTROL OBJECTIVE AND INPUT-STATE APPROXIMATOR The objective is to find a control input sequence uk kd to drive the state of the plant to converge asymptotically to xkd, a prescribed state trajectory, while learning the inverse input
9、-state map of the plant and monitoring performance deviations from expected behavior. 010),(xxuxFxkkkk(1)The plant (in this case the EHPV)is assumed to have a nonlinear discrete-times tate space representation with a fixed sampling time Ts of the form:CONTROL OBJECTIVE AND INPUT-STATE APPROXIMATOR E
10、ach entry of the input space of the NLPN in the basis function vector is computed from)()(,1jjinjIixxj else 0, if,)()(), if,)()()(1, 1, 11, 1, 1mj,jmm,jjjmjmjmjm,j,jm-jjmjmjmjjxxxxxFig. 2. Sample NLPN 2D input space partition showing piece-wise linear basis functions of unitary magnitude.(2)CONTROL
11、LAW AND STABILITY The proposed control law consists of two parts, one used to learn the inverse input-state calibration map and the other to use this learned map for feedforward control.)(lim)(suplimooeAkkkkFig. 3. Complete architecture for the NBIM control law.(3)ELECTRONIC CONTROL OF HYDRAULIC PRE
12、SSURE The actual flow coefficient of the valve Kv, used for feedback, is computed using Eq. (6) by substituting the measured pressure P s instead of Psd. RdsdspdvPPyAPQK)(6) Tracking of the desired flow conductance is illustrated in Fig. 6 where it can be seen that good performance can be achieved w
13、ith active learning/adaptation. Fig.6Fig.7 The tracking performance of the resulting supply pressure is shown in Fig.7. Likewise, improved tracking of the desired pressure profile was achieved with learning/adaptation.ELECTRONIC CONTROL OF HYDRAULIC PRESSURECONCLUSION (1)This paper presented the app
14、lication of an online auto-calibration based control method for the EHPV. (2)The control law presented herein simultaneously learned the inverse input-state calibration map of the EHPV while forcing its conductance to follow a prescribed desired trajectory. This was accomplished by treating the EHPV
15、 as single-state variable nonlinear plant and using a generic input-state map obtained from steady state data to initialized the NLPN. (3)Experimental results showed the performance of the valve under this control action was superior than the performance resulting from simply using an open-loop static look-up table based controller. (4)A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中国加热变形试验机行业市场前景预测及投资价值评估分析报告
- 2026年中国门诊输液系统行业市场前景预测及投资价值评估分析报告
- 2026年中国炉体行业市场前景预测及投资价值评估分析报告
- 宜宾市航务事务中心2025年第2次公开招聘编外人员考试笔试模拟试题及答案解析
- 青海省格尔木健桥医院医务人员招聘考试笔试参考题库附答案解析
- 2026云南文山州检验检测认证院事业单位紧缺岗位招聘3人考试笔试备考题库及答案解析
- 2025下半年江苏淮安市洪泽区卫生健康委员会所属事业单位招聘10人笔试考试参考试题及答案解析
- (人教2024版PEP)英语一年级上册全册单元测试(含答案+听力音频)新教材
- 骨关节炎康复锻炼方案
- 2025年科技部技术合同示范文本(技术支持服务)
- 人教版初一到初三英语单词
- 医疗废物的管理和分类
- 循证思维在临床护理教学中的应用
- 围手术期管理制度与流程
- 2025大连机场招聘109人高频重点提升(共500题)附带答案详解
- 湘教版(2024新版)七年级上册地理期末复习必背知识提纲
- 【MOOC】大学生心理健康-厦门大学 中国大学慕课MOOC答案
- 企业用地申请报告范文
- 快递突发事件应急预案(3篇)
- 2024年自助售货店转让合同范文
- 2023年凉山州雷波重点国有林保护局招聘工作人员笔试真题
评论
0/150
提交评论