




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2013年高考理科数学试题解析(课标)第卷一、 选择题共12小题。每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。1.已知集合,则 ( )A.AB=Æ B.AB=R C.BAD.AB2.若复数满足,则的虚部为()A. B. C.4 D.3.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.已知双曲线:()的离心率为,则的渐近
2、线方程为A. B. C. D.5.运行如下程序框图,如果输入的,则输出s属于A. B. C. D.6.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为 ( )A.B. C. D. 7.设等差数列的前项和为,则 ( )A.3 B.4 C.5 D.68.某几何体的三视图如图所示,则该几何体的体积为A B C D9.设为正整数,展开式的二项式系数的最大值为,展开式的二项式系数的最大值为,若,则 ( )A.5 B.6C.7D.810.已知椭圆的右焦点为,过点的直线交椭圆于两点。若的中点坐
3、标为,则的方程为 ()A.B.C.D.11.已知函数,若|,则的取值范围是A B C D12.设的三边长分别为,的面积为,若,则()A.Sn为递减数列 B.Sn为递增数列C.S2n1为递增数列,S2n为递减数列D.S2n1为递减数列,S2n为递增数列二填空题:本大题共四小题,每小题5分。13.已知两个单位向量a,b的夹角为60°,cta(1t)b,若b·c=0,则t=_.14.若数列的前n项和为Sn,则数列的通项公式是=_.15.设当时,函数取得最大值,则_16.若函数=的图像关于直线对称,则的最大值是_.三.解答题:解答应写出文字说明,证明过程或演算步骤。17.(本小题满
4、分12分)如图,在ABC中,ABC90°,AB=,BC=1,P为ABC内一点,BPC90°(1)若PB=,求PA;(2)若APB150°,求tanPBA18.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,BA A1=60°.()证明ABA1C;()若平面ABC平面AA1B1B,AB=CB=2,求直线A1C 与平面BB1C1C所成角的正弦值。19.(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n。如果n=3,再从这批产品中任取4件作检验,若都为优质品
5、,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验。假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立(1)求这批产品通过检验的概率;(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望。20.(本小题满分12分)已知圆:,圆:,动圆与外切并且与圆内切,圆心的轨迹为曲线 C.()求C的方程;()是与圆,圆都相切的一条直线,与曲线C交于A,B两点,当圆P的半径最长时,求|AB|. 21.(
6、本小题满分共12分)已知函数,若曲线和曲线都过点P(0,2),且在点P处有相同的切线()求,的值;()若2时,求的取值范围。22(本小题满分10分)选修41:几何证明选讲 如图,直线AB为圆的切线,切点为B,点C在圆上,ABC的角平分线BE交圆于点E,DB垂直BE交圆于D。 ()证明:DB=DC; ()设圆的半径为1,BC=3 ,延长CE交AB于点F,求BCF外接圆的半径。23.(本小题10分)选修44:坐标系与参数方程 已知曲线C1的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为。()把C1的参数方程化为极坐标方程;()求C1与C2交点的极坐标(
7、0,02)。24.(本小题满分10分)选修45:不等式选讲已知函数=,=.()当=2时,求不等式的解集;()设-1,且当,)时,,求的取值范围.参考答案一、选择题1【解析】A=(-,0)(2,+), AB=R,故选B.2【解析】由题知=,故z的虚部为,故选D.3【解析】因该地区小学.初中.高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样,故选C.4【解析】由题知,即=,=,=,的渐近线方程为,故选.5【解析】有题意知,当时,当时,输出s属于-3,4,故选.6【解析】设球的半径为R,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R-2,则,解得R=5,球的体
8、积为,故选A.7【解析】有题意知=0,=(-)=2,= -=3,公差=-=1,3=,=5,故选C.8【解析】由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,上边放一个长为4宽为2高为2长方体,故其体积为 =,故选.9【解析】由题知=,=,13=7,即=,解得=6,故选B.10【解析】设,则=2,=2, 得,=,又=,=,又9=,解得=9,=18,椭圆方程为,故选D.11【解析】|=,由|得,且,由可得,则-2,排除,当=1时,易证对恒成立,故=1不适合,排除C,故选D.12B13【解析】=0,解得=.14【解析】当=1时,=,解得=1,当2时,=()=,即=,是首项为1,公比为2的等比
9、数列,=.15【解析】=令=,则=,当=,即=时,取最大值,此时=,=.16【解析】由图像关于直线=2对称,则0=,0=,解得=8,=15,=,=当(,)(2, )时,0,当(,2)(,+)时,0,在(,)单调递增,在(,2)单调递减,在(2,)单调递增,在(,+)单调递减,故当=和=时取极大值,=16.17【解析】()由已知得,PBC=,PBA=30o,在PBA中,由余弦定理得=,PA=;()设PBA=,由已知得,PB=,在PBA中,由正弦定理得,化简得,=,=.18【解析】()取AB中点E,连结CE,AB=,=,是正三角形,AB, CA=CB, CEAB, =E,AB面, AB; 6分()
10、由()知ECAB,AB,又面ABC面,面ABC面=AB,EC面,EC,EA,EC,两两相互垂直,以E为坐标原点,的方向为轴正方向,|为单位长度,建立如图所示空间直角坐标系,有题设知A(1,0,0),(0,0),C(0,0,),B(1,0,0),则=(1,0,),=(1,0,),=(0,), 9分设=是平面的法向量,则,即,可取=(,1,-1),=,直线A1C 与平面BB1C1C所成角的正弦值为. 12分19【解析】设第一次取出的4件产品中恰有3件优质品为事件A,第一次取出的4件产品中全为优质品为事件B,第二次取出的4件产品都是优质品为事件C,第二次取出的1件产品是优质品为事件D,这批产品通过检
11、验为事件E,根据题意有E=(AB)(CD),且AB与CD互斥,P(E)=P(AB)+P(CD)=P(A)P(B|A)+P(C)P(D|C)=+=.6分()X的可能取值为400,500,800,并且P(X=400)=1-=,P(X=500)=,P(X=800)=,X的分布列为X400500800P 10分EX=400×+500×+800×=506.25 12分20【解析】由已知得圆的圆心为(-1,0),半径=1,圆的圆心为(1,0),半径=3.设动圆的圆心为(,),半径为R.()圆与圆外切且与圆内切,|PM|+|PN|=4,由椭圆的定义可知,曲线C是以M,N为左右焦
12、点,场半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为.()对于曲线C上任意一点(,),由于|PM|-|PN|=2,R2,当且仅当圆P的圆心为(2,0)时,R=2.当圆P的半径最长时,其方程为,当的倾斜角为时,则与轴重合,可得|AB|=.当的倾斜角不为时,由R知不平行轴,设与轴的交点为Q,则=,可求得Q(-4,0),设:,由于圆M相切得,解得.当=时,将代入并整理得,解得=,|AB|=.当=时,由图形的对称性可知|AB|=,综上,|AB|=或|AB|=.21【解析】()由已知得,而=,=,=4,=2,=2,=2;4分()由()知,设函数=(),=,有题设可得0,即,令=0得,=,=2,(1
13、)若,则20,当时,0,当时,0,即在单调递减,在单调递增,故在=取最小值,而=0,当2时,0,即恒成立,(2)若,则=,当2时,0,在(2,+)单调递增,而=0,当2时,0,即恒成立,(3)若,则=0,当2时,不可能恒成立,综上所述,的取值范围为1,.22【解析】()连结DE,交BC与点G.由弦切角定理得,ABF=BCE,ABE=CBE,CBE=BCE,BE=CE,又DBBE,DE是直径,DCE=,由勾股定理可得DB=DC.()由()知,CDE=BDE,BD=DC,故DG是BC的中垂线,BG=.设DE中点为O,连结BO,则BOG=,ABE=BCE=CBE=,CFBF, RtBCF的外接圆半径
14、等于.23. 【解析】将消去参数,化为普通方程,即:,将代入得,的极坐标方程为;()的普通方程为,由解得或,与的交点的极坐标分别为(),.24【解析】当=-2时,不等式化为,设函数=,=,其图像如右图所示从图像可知,当且仅当时,0,原不等式解集是.()当,)时,=,不等式化为,对,)都成立,故,即,的取值范围为(-1,.2012年普通高等学校招生全国统一考试理 科 数 学第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。1、已知集合A=1,2,3,4,5,B=(x,y)|xA,yA,x-yA,则B中所含元素的个数为(A)3 (B)6 (C)8
15、(D)102、将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组有1名教师和2名学生组成,不同的安排方案共有(A)12种 (B)10种 (C)9种 (D)8种3、下面是关于复数z=的四个命题P1:=2 P2: =2iP3:z的共轭复数为1+i P4 :z的虚部为-1其中真命题为(A). P2 ,P3 (B) P1 ,P2 (C)P2,P4 (D)P3,P44、设F1,F2是椭圆E:+=1 (ab0)的左、右焦点 ,P为直线上的一点,是底角为30°的等腰三角形,则E的离心率为(A) (B) (C) (D)5、已知为等比数列,则(A)7 (B)5 (C)-5
16、 (D)-76、如果执行右边的程序图,输入正整数和实数,输入A,B,则(A)A+B为的和(B)为的算式平均数(C)A和B分别是中最大的数和最小的数(D)A和B分别是中最小的数和最大的数7、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6 (B)9 (C)12 (D)188、等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于,两点,则的实轴长为(A) (B) (C) 4 (D)89、已知w0,函数在单调递减,则的取值范围是(A) (B) (C) (D)10、已知函数,则的图像大致为11、已知三棱锥S-ABC的所有顶点都在球O的球面上,ABC是边长为1
17、的正三角形,SC为O的直径,且SC=2,则此棱锥的体积为(A) (B) (C) (D)12、设点P在曲线上,点Q在曲线上,则|PQ|的最小值为(A) (B) (C) (D) 第卷本卷包括必考题和选考题两部分。第13题第21题为必考题,每个试题考生都必须作答。第22题第24题为选考题,考试依据要求作答。2. 填空题:本大题共4小题,每小题5分。13、已知向量,夹角为45°,且,则=_.14、设x,y满足约束条件则的取值范围为_.15、某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作。设三个电子元件的使用寿命(单位:小时)均服从正态分布N
18、(1000,),且各个元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为_.元件1元件3元件216、数列满足,则的前60项和为_。三、解答题:解答应写出文字说明,证明过程或演算步骤。17、(本小题满分12分)已知a,b,c分别为ABC的三个内角A,B,C的对边,。()求A;()若,的面积为,求,。18、(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花作垃圾处理。()若花店一天购进16枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝,)的函数解析式。日需求量14 151617181920频
19、数10201616151310()花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率。()若花店一天购进16枝玫瑰花,表示当天的利润(单位:元),求的分布列、数学期望及方差;()若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由。19、(本小题满分12分)如图,直三棱柱中,是棱的中点,。(1) 证明:;(2) 求二面角1的大小。20、(本小题满分12分)设抛物线:的焦点为,准线为l,为上一点,已知以F为圆心,为半径的圆交l于,两点。(1) 若BFD=90°,的面积为,求的值及圆的方程;(2)
20、若三点在同一直线上,直线与平行,且与之有一个公共点,求坐标原点到,距离的比值。21、(本小题满分12分)已知函数满足(1) 求的解析式及单调区间;(2) 若,求的最大值。请考生在第22、23、24题中任选一道作答,如果多做,则按所做的第一题计分。作答时请写清题号。22、(本小题满分10分)选修41;几何证明选讲如图,D,E分别为边,的中点,直线交ABC的外接圆于F,G两点,若CFAB,证明:()CD=BC;()。23、(本小题满分10分)选修44;坐标系与参数方程已知曲线的参数方程式(为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线的极坐标方程式。正方形的顶点都在上,且,依逆时针
21、次序排列,点的极坐标为。()求点,的直角坐标;()设为上任意一点,求的取值范围。24、(本小题满分10分)选修45;不等式选讲已知函数()当时,求不等式的解集;(2)若的解集包含,求的取值范围。答案一、选择:123456DACCDC789101112BCABAB二、填空:13、 14.、-3,315、 16、1830三、解答:17、(1)由正弦定理得: (2) 18、(1)当时, 当时, 得: (2)(i)可取, 的分布列为 (ii)购进17枝时,当天的利润为 得:应购进17枝19、(1)在中, 得: 同理: 得:面 (2)面 取的中点,过点作于点,连接 ,面面面 得:点与点重合 且是二面角的
22、平面角 设,则, 既二面角的大小为20、(1)由对称性知:是等腰直角,斜边 点到准线的距离 圆的方程为 (2)由对称性设,则 点关于点对称得: 得:,直线 切点 直线坐标原点到距离的比值为。21、(1) 令得: 得: 在上单调递增 得:的解析式为 且单调递增区间为,单调递减区间为 (2)得 当时,在上单调递增 时,与矛盾 当时, 得:当时, 令;则 当时, 当时,的最大值为22、(1), (2) 24、(1)点的极坐标为 点的直角坐标为 (2)设;则 23、(1)当时, 或或 或 (2)原命题在上恒成立在上恒成立在上恒成立2011年普通高等学校招生全国统一考试理科数学第I卷一、选择题:本大题共
23、12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。(1)复数的共轭复数是(A) (B) (C) (D)(2)下列函数中,既是偶函数哦、又在(0,)单调递增的函数是(A) (B) (C) (D) (3)执行右面的程序框图,如果输入的N是6,那么输出的p是(A)120 (B)720 (C)1440 (D)5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A) (B) (C) (D)(5)已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则=(A) (B) (C) (D)(6)
24、在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为(7)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于 A,B两点,为C的实轴长的2倍,则C的离心率为(A) (B) (C)2 (D)3(8)的展开式中各项系数的和为2,则该展开式中常数项为(A)-40 (B)-20 (C)20 (D)40(9)由曲线,直线及轴所围成的图形的面积为(A) (B)4 (C) (D)6(10)已知a与b均为单位向量,其夹角为,有下列四个命题 其中的真命题是(A) (B) (C) (D)(11)设函数的最小正周期为,且,则(A)在单调递减 (B)在单调递减(C)在单调递增(D)在单
25、调递增(12)函数的图像与函数的图像所有焦点的横坐标之和等于(A)2 (B) 4 (C) 6 (D)8第卷本卷包括必考题和选考题两部分。第13题-第21题为必考题,每个试题考生都必须做答。第22题第24题为选考题,考生根据要求做答。二、填空题:本大题共4小题,每小题5分。(13)若变量满足约束条件则的最小值为 。(14)在平面直角坐标系中,椭圆的中心为原点,焦点在 轴上,离心率为。过的直线 交于两点,且的周长为16,那么的方程为 。(15)已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为 。(16)在中,则的最大值为 。三、解答题:解答应写出文字说明,证明过程或演算步骤。(17)(本
26、小题满分12分)等比数列的各项均为正数,且求数列的通项公式.设 求数列的前项和.(18)(本小题满分12分)如图,四棱锥PABCD中,底面ABCD为平行四边形,DAB=60°,AB=2AD,PD底面ABCD.()证明:PABD;()若PD=AD,求二面角A-PB-C的余弦值。(19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测试了每件产品的质量指标值,得到下面试验结果:()分别估计用A配方,B配方生产的产品的优质品率;()已知
27、用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为 从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)(20)(本小题满分12分) 在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y = -3上,M点满足MB/OA, MAAB = MBBA,M点的轨迹为曲线C。()求C的方程;()P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值。(21)(本小题满分12分)已知函数,曲线在点处的切线方程为。()求、的值;()如果当,且时,求的取值范围。请考生在
28、第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分。做答时请写清题号。(22)(本小题满分10分)选修4-1:几何证明选讲如图,分别为的边,上的点,且不与的顶点重合。已知的长为,的长是关于的方程的两个根。()证明:,四点共圆;()若,且,求,所在圆的半径。(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C1的参数方程为(为参数)M是C1上的动点,P点满足,P点的轨迹为曲线C2()求C2的方程()在以O为极点,x 轴的正半轴为极轴的极坐标系中,射线与C1的异于极点的交点为A,与C2的异于极点的交点为B,求.(24)(本小题满
29、分10分)选修4-5:不等式选讲设函数,其中。()当时,求不等式的解集()若不等式的解集为 ,求a的值。2011年普通高等学校招生全国统一考试理科数学试卷参考答案一、选择题(1)C (2)B (3)B (4)A (5)B (6)D(7)B (8)D (9)C (10)A (11)A (12)D二、填空题(13)-6 (14) (15) (16)三、解答题(17)解:()设数列an的公比为q,由得所以。有条件可知a>0,故。由得,所以。故数列an的通项式为an=。( )故所以数列的前n项和为(18)解:( )因为, 由余弦定理得 从而BD2+AD2= AB2,故BDAD
30、又PD底面ABCD,可得BDPD所以BD平面PAD. 故PABD()如图,以D为坐标原点,AD的长为单位长,射线DA为轴的正半轴建立空间直角坐标系D-,则,。设平面PAB的法向量为n=(x,y,z),则 即 因此可取n=设平面PBC的法向量为m,则 可取m=(0,-1,) 故二面角A-PB-C的余弦值为 (19)解()由实验结果知,用A配方生产的产品中优质的平率为,所以用A配方生产的产品的优质品率的估计值为0.3。由实验结果知,用B配方生产的产品中优质品的频率为,所以用B配方生产的产品的优质品率的估计值为0.42()用B配方生产的100件产品中,其质量指标值落入区间的频率分别为0.04,,05
31、4,0.42,因此 P(X=-2)=0.04, P(X=2)=0.54, P(X=4)=0.42,即X的分布列为X的数学期望值EX=2×0.04+2×0.54+4×0.42=2.68(20)解:()设M(x,y),由已知得B(x,-3),A(0,-1).所以=(-x,-1-y), =(0,-3-y), =(x,-2).再由愿意得知(+) =0,即(-x,-4-2y) (x,-2)=0.所以曲线C的方程式为y=x-2.()设P(x,y)为曲线C:y=x-2上一点,因为y=x,所以的斜率为x因此直线的方程为,即。则O点到的距离.又,所以当=0时取等
32、号,所以O点到距离的最小值为2.(21)解:()由于直线的斜率为,且过点,故即解得,。()由()知,所以。考虑函数,则。(i)设,由知,当时,。而,故当时,可得;当x(1,+)时,h(x)<0,可得 h(x)>0从而当x>0,且x1时,f(x)-(+)>0,即f(x)>+.(ii)设0<k<1.由于当x(1,)时,(k-1)(x2 +1)+2x>0,故h (x)>0,而h(1)=0,故当x(1,)时,h(x)>0,可得h(x)<0,与题设矛盾。(iii)设k1.此时h (x)>0,而h(1)=0,故当x(1,+)时,h(x
33、)>0,可得 h(x)<0,与题设矛盾。 综合得,k的取值范围为(-,0(22)解:(I)连接DE,根据题意在ADE和ACB中, AD×AB=mn=AE×AC, 即.又DAE=CAB,从而ADEACB 因此ADE=ACB 所以C,B,D,E四点共圆。()m=4, n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故 AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.由于A=900,故GHAB, HFAC.
34、HF=AG=5,DF= (12-2)=5.故C,B,D,E四点所在圆的半径为5(23)解:(I)设P(x,y),则由条件知M().由于M点在C1上,所以 即 从而的参数方程为(为参数)()曲线的极坐标方程为,曲线的极坐标方程为。射线与的交点的极径为,射线与的交点的极径为。所以.(24)解:()当时,可化为。由此可得 或。故不等式的解集为或。( ) 由的 此不等式化为不等式组或即 或因为,所以不等式组的解集为由题设可得= ,故2010年高考新课标全国卷理科数学试题及答案(新课标)理科数学 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,其中第II卷第(22)-(24)题为选考题,
35、其他题为必考题。考生作答时,将答案答在答题卡上,在本试卷上答题无效。考试结束后,将本试卷和答题卡一并交回。注意事项:学子 特级教师王新敞 wxckt1、答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。2、选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。3、请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。4、保持卷面清洁,不折叠,不破损。5、做选考题时,考生按照题目要求作答,并用2B铅笔
36、在答题卡上把所选题目对应的题号涂黑。参考公式:样本数据的标准差 锥体体积公式 其中为样本平均数 其中为底面面积,为高柱体体积公式 球的表面积,体积公式来源:Z。xx。k.Com 其中为底面面积,为高 其中R为球的半径第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。(1)已知集合,则(A)(0,2) (B)0,2 (C)0,2 (D)0,1,2(2)已知复数,是z的共轭复数,则=A. B. C.1 D.2(3)曲线在点(-1,-1)处的切线方程为(A)y=2x+1 (B)y=2x-1 C y=-2x-3 D.y=-2x-2(4)如图,质点P在半
37、径为2的圆周上逆时针运动,其初始位置为P0(,-),角速度为1,那么点P到x轴距离d关于时间t的函数图像大致为学子 特级教师王新敞 wxckt126.co(5)已知命题:函数在R为增函数,:函数在R为减函数,则在命题:,:,:和:中,真命题是(A), (B), (C), (D),(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为(A)100 (B)200 (C)300 (D)400(7)如果执行右面的框图,输入,则输出的数等于(A) (B)(C) (D)(8)设偶函数满足,则(A) (B) (C) (D) (9
38、)若,是第三象限的角,则(A) (B) (C) 2(D) -2(10)设三棱柱的侧棱垂直于底面,所有棱长都为,顶点都在一个球面上,则该球的表面积为(A) (B) (C) (D) (11)已知函数若互不相等,且则的取值范围是(A) (B) (C) (D) (12)已知双曲线的中心为原点,是的焦点,过F的直线与相交于A,B两点,且AB的中点为,则的方程式为(A) (B) (C) (D) 第卷本卷包括必考题和选考题两部分,第(13)题第(21)题为必考题,每个试题考生都必须做答,第(22)题第(24)题为选考题,考试根据要求做答。二、填空题:本大题共4小题,每小题5分。(13)设为区间上的连续函数,
39、且恒有,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间上的均匀随机数和,由此得到N个点,再数出其中满足的点数,那么由随机模拟方案可得积分的近似值为 。(14)正视图为一个三角形的几何体可以是_(写出三种)(15)过点A(4,1)的圆C与直线x-y=0相切于点B(2,1),则圆C的方程为_(16)在ABC中,D为边BC上一点,BD=DC,ADB=120°,AD=2,若ADC的面积为,则BAC=_学子 特级教师王新敞 wxckt三,解答题:解答应写出文字说明,正明过程和演算步骤(17)(本小题满分12分)设数列满足(1) 求数列的通项公式;(2) 令,求数列的前n项和(18)
40、(本小题满分12分)如图,已知四棱锥P-ABCD的底面为等腰梯形,ABCD,ACBD,垂足为H,PH是四棱锥的高 ,E为AD中点(1) 证明:PEBC(2) 若APB=ADB=60°,求直线PA与平面PEH所成角的正弦值(19)(本小题12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:是否需要志愿 性别男女需要4030不需要160270(1) 估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2) 能否有99的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3) 根据(2)的结论,能否提供更好的调查方法来估计该地
41、区老年人,需要志愿帮助的老年人的比例?说明理由附: 0.050 0.010 0.001 3.841 6.635 10.828学子 特级教师王新敞 wxckt126(20)(本小题满分12分)设分别是椭圆的左、右焦点,过斜率为1的直线与相交于两点,且成等差数列。(1)求的离心率; (2) 设点满足,求的方程(21)(本小题满分12分)设函数。(1) 若,求的单调区间;(2) 若当时,求的取值范围学子 特级教师王新敞 wxckt请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分。做答时用2B铅笔在答题卡上把所选题目的题号涂黑。(22)(本小题满分10分)选修4
42、-1:几何证明选讲 如图,已经圆上的弧,过C点的圆切线与BA的延长线交于E点,证明:()ACE=BCD;()BC2=BF×CD。(23)(本小题满分10分)选修4-4:坐标系与参数方程 已知直线C1(t为参数),C2(为参数),()当=时,求C1与C2的交点坐标;()过坐标原点O做C1的垂线,垂足为A,P为OA中点,当变化时,求P点的轨迹的参数方程,并指出它是什么曲线。学子 特级教师王新敞 wxckt(24)(本小题满分10分)选修4-5,不等式选项 设函数()画出函数的图像()若不等式的解集非空,求a的取值范围。学子 特级教师王新敞 wxckt2010年普通高等学校招生全国统一考试
43、(新课标)理科数学试题参考答案一、 选择题(1)D (2)A (3)A (4)C (5)C (6)B(7)D (8)B (9)A (10)B (11)C (12)B(1) 已知集合,则(A)(0,2) (B)0,2 (C)0,2 (D)0,1,2解析:,选D命题意图:考察集合的基本运算(2)已知复数,是z的共轭复数,则=A. B. C.1 D.2解析: ,所以选A命题意图:考察复数的四则运算(3)曲线在点(-1,-1)处的切线方程为(A)y=2x+1 (B)y=2x-1 C y=-2x-3 D.y=-2x-2解析:,所以点(-1,-1)处的切线方程为y=2x+1,命题意图:考察导数的几何意义(
44、4)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,-),角速度为1,那么点P到x轴距离d关于时间t的函数图像大致为解析:法一:排除法 取点,排除A、D,又当点P刚从t=0开始运动,d是关于t的减函数,所以排除B,选C 法二:构建关系式 x轴非负半轴到OP的角,由三角函数的定义可知 ,所以,选C命题意图:考察三角函数的定义及图像(5)已知命题:函数在R为增函数,:函数在R为减函数,则在命题:,:,:和:中,真命题是(A), (B), (C), (D),解析:对于:显然在R为增函数,命题为真 对于:, 当,命题为假对于,也可通过复合函数单调性法则,分解为简单函数处理利用复合命题真值
45、表,显然,为真命题,选C命题意图:复合命题真假判断为背景考察函数的单调性(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为(A)100 (B)200 (C)300 (D)400解析:设发芽的粒数为 又,选B命题意图:考察二项分布期望公式及公式(7)如果执行右面的框图,输入,则输出的数等于(A) (B)(C) (D)解析:所以选D 命题意图:以算法为背景考察裂项相消求和(8)设偶函数满足,则(A) (B) (C) (D) 解析:,选B另法:(特征分析法)偶函数的图像关于y轴对称,函数的图形必关于直线对称,由此可知不等式的解集应该关于2对称。符合这一条件的选项只有B,故选B.命题意图:利用函数性质解不等式(9)若,是第三象限的角,则(A) (B) (C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心脑血管病防治讲座课件教学
- 心肺复苏家长课堂课件
- 2025年甘油胶水:UV胶水合作协议书
- 出国退款协议书范本
- 拆迁租户之间协议书范本
- 宠物转送协议书范本大全
- 2025年镉镍航空蓄电池项目合作计划书
- 古风离婚协议书范本
- 家私损坏赔偿协议书范本
- 流浪人员移交协议书范本
- 2024年安徽省濉溪县人民医院公开招聘医务工作人员试题带答案详解
- 2025年浙江省宁海县事业单位公开招聘辅警考试题带答案分析
- 四川省广安市(武胜、岳池、华蓥)2024-2025学年八年级下学期期末考试物理试卷(含答案)
- 脑卒中的饮食护理课件
- 盾构安全培训课件模板
- 2025年多重耐药菌培训知识试题及答案
- 食管癌的围手术期护理
- 2025至2030中国航空球轴承行业项目调研及市场前景预测评估报告
- 2025年湖北省中考语文试卷真题(含标准答案及解析)
- 2025至2030中国牙科氧化锆块行业发展趋势分析与未来投资战略咨询研究报告
- 全国省市电子表格
评论
0/150
提交评论