




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3.1 平平方方根根 2222221 -2_ 2_ 112 _ -_223 04 9 1.填空:、,;、,;、;、,144414032.(1)一张正方形桌面的边长为)一张正方形桌面的边长为1.2m,面积是多少?面积是多少?(2 2)一张正方形桌面的面积)一张正方形桌面的面积为为1.44m1.44m2 2,边长是多少,边长是多少m m?解解: 221.2 1.44Sm正 方 形中的中的“?”.21.44( ?) 这个问题实际上是求这个问题实际上是求21.21.442( 1.2)1.442( ? )1.441.2 一般地,如果一个数的平方等于一般地,如果一个数的平方等于a a,那么这个数叫,那么这
2、个数叫做做a a的的平方根平方根(square rootsquare root),也叫做),也叫做a a的的二次方根二次方根即即 , 那么那么 就叫做就叫做 的的平方根平方根.2xaxa一、平方根的概念一、平方根的概念49, 0.25 的平方根分别是什么的平方根分别是什么?通过观察,你能发现正数的两个平方根之间的通过观察,你能发现正数的两个平方根之间的关系吗?关系吗?0有没有平方根,为什么?有没有平方根,为什么?-4有没有平方根,为什么?有没有平方根,为什么?一个正数的平方根有几个一个正数的平方根有几个?(7、0.5)一个一个正数正数有正、负两个平方根有正、负两个平方根,它们互为它们互为相反数
3、相反数两个两个零零的平方根是的平方根是零零负数负数没有平方根没有平方根1、一个正数有正、负两个平方根,它们互为相反数; 2、0的平方根是0;3、负数没有平方根平方根的性质:平方根的性质:aaa(读作“根号 ”).一个正数 的正平方根,用“”表示,aaa(读作“负根号 ”).的负平方根,用“”表示,aaa(读作“正、负根”,号).合起来,一个正数 的平方根就用“”表示a( 是非负数)是非负数)根号根号被开方数被开方数求一个数的平方根的运算叫做求一个数的平方根的运算叫做开平方开平方a2 21 1 (),的平方根是 ,即;11112 26464 (),6464的的平平方方根根是是,即即;2 20.0
4、40.04 (),0.040.04的的平平方方根根是是,即即;2 23636363625252525 (),1 1 1 1 1 1 8 8 8 88 8640 20 2.0 20 2.0 0. .2 2 0.040.04 6 65 5 6 65 5 (2)(3)(4)(1)填一填填一填 25(1)16(2)0.36(3)437(4) 1(5) 9注意:(1)带分数作为被开方数应化成假分数 (2)正数的平方根是正负两个值,不能漏写例1:求下列各数的平方根40.652433(1)9的平方根是3; ( )(2) 49的平方根是7; ( )(3)(2)2的平方根是2; ( )(4)1 是 1的平方根;
5、 ( )()5的平方根是5 ( )正数的正平方根正数的正平方根和和零的平方根零的平方根, ,统称统称算术平方根算术平方根一个数一个数 的算术平方根记做的算术平方根记做(0)a a a)0( a填空:填空:(1)9的算术平方根是的算术平方根是;(2)10的算术平方根是的算术平方根是;(3)算)算术平方根等于它本身的是术平方根等于它本身的是.3100和1100(1)=10100(2)= -10259(5) = 5304. 0(3)2)6((4)= - 0.2= 6例例2:说出下列各式的意义,并计算:说出下列各式的意义,并计算:1.本节课引入了新的运算本节课引入了新的运算-开方运算开方运算,开方和乘
6、开方和乘方方互为逆运算,从而完备了初等代数中六种基本互为逆运算,从而完备了初等代数中六种基本代数运算(代数运算(加、减、乘、除、乘方加、减、乘、除、乘方、开方开方),这),这对代数内容学习有着重要的意义。对代数内容学习有着重要的意义。2.本节主要学习了本节主要学习了: 平方根的概念;平方根的概念; 平方根的性质:平方根的性质:一个正数有两个平方根,它们一个正数有两个平方根,它们互为相反数,互为相反数,0的平方根是的平方根是0,负数没有平方根,负数没有平方根; 平方根的表示方法;平方根的表示方法; 求一个数的平方根的运算求一个数的平方根的运算开平方开平方,应分清平,应分清平方运算与开平方运算的区别与联系;方运算与开平方运算的区别与联系; 算术平方根的定义及
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025河南郑州人才发展集团下属子公司招聘16人笔试参考题库附带答案详解
- 2025年江西省金控科技产业集团社会招聘4人(第一批次)笔试参考题库附带答案详解
- 2025山西华阳新材料科技集团有限公司招聘500人笔试参考题库附带答案详解
- 纺织工程师材料性能评估试题及答案
- 设计与创意合一的2024年国际商业美术设计师考试试题及答案
- 柴油履约合同协议书
- 饭店合伙合同协议书
- 饲料合同协议书
- 章程合同协议书
- 合同协议书范本
- 逻辑门公开课教案教学设计课件
- 现代汉语(黄伯荣、廖序东版)课件–绪论
- 固定循环指令G71(G70)(课件)
- 第三次全国国土调查工作分类与三大类对照表
- 职业生涯规划表模板
- DL/T 5182-2021 火力发电厂仪表与控制就地设备安装、管路、电缆设计规程
- 从龙的形象看妈祖的文化精神
- 麟龙量能饱和度圆圈指标
- 我的小学生涯
- 无人机导航与通信技术PPT完整全套教学课件
- 第三帝国三部曲:当权的第三帝国(全集)
评论
0/150
提交评论