试卷错题分析对比_第1页
试卷错题分析对比_第2页
试卷错题分析对比_第3页
试卷错题分析对比_第4页
试卷错题分析对比_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数学试卷一、选择题(共10小题,每小题3分,满分30分)1(3分)如图所示的几何体的主视图是()ABCD考点:简单组合体的三视图菁优网版权所有分析:找到从正面看所得到的图形即可解答:解:从正面可看到从左往右4列小正方形的个数为:1,1,2,2,故选B点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图2(3分)下列运算中结果正确的是()A3a+2b=5abB5y3y=2C3x+5x=8xD3x2y2x2y=x2y考点:合并同类项菁优网版权所有分析:所含字母相同,并且相同字母的指数相同,像这样的项是同类项;合并同类项,系数相加字母不变;、合并同类项,系数相加字母和字母的指数不变解答:解

2、:A、算式中所含字母不同,所以不能合并,故A错误;B、5y3y=2y,合并同类项,系数相加字母不变,故B错误;C、3x+5x=2x,合并同类项,系数相加减,故C错误;D、3x2y2x2y=x2y,合并同类项,系数相加字母和字母的指数不变,故D正确故选D点评:“同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并”这是本题特别应该注意的地方3(3分)如图所示,梯子的各条横档互相平行,若1=70°,则2的度数是()A80°B110°C120°D140°考点:平行线的性质菁优网版权所有专题:计算题分析:先根据两直线平

3、行,同位角相等求出2的邻补角,再根据平角的定义即可求出解答:解:如图,各条横档互相平行,1=70°,3=1=70°,2=180°70°=110°故选B点评:本题利用平行线的性质和平角的定义求解4(3分)下列命题是假命题的是()A三角形的内角和是180°B多边形的外角和都等于360°C五边形的内角和是900°D三角形的一个外角等于和它不相邻的两个内角的和考点:多边形内角与外角;三角形内角和定理;三角形的外角性质菁优网版权所有分析:此题是命题中的真假命题问题,属于常规题运用多边形内角和公式(n2)×180&#

4、176;解答:解:(52)×180°=540°,五边形的内角和是540°故选C点评:运用多边形内角和公式(n2)×180°5(3分)如图所示,吴伯伯家一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需要篱笆的长是()A15米B20米C25米D30米考点:三角形中位线定理菁优网版权所有专题:应用题分析:根据三角形的中位线平行于第三边并且等于第三边的一半求出BC的长,也就是等边三角形的边长,周长也就不难得到解答:解:点E,F分别是边AB,AC的中点,EF=5米

5、,BC=2EF=10米,ABC是等边三角形,AB=BC=AC,BE=CF=BC=5米,篱笆的长=BE+BC+CF+EF=5+10+5+5=25米故选C点评:本题利用三角形的中位线平行于第三边并且等于第三边的一半的性质和等边三角形三边相等的性质求解6(3分)若代数式有意义,则x的取值范围是()Ax1且x2Bx1Cx2Dx1且x2考点:函数自变量的取值范围;二次根式有意义的条件菁优网版权所有专题:计算题分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解解答:解:由分式及二次根式有意义的条件可得:x10,x20,解得:x1,x2,故选:D点评:本题考查的知识点为:分

6、式有意义,分母不为0;二次根式的被开方数是非负数7(3分)已知A是锐角,sinA=,则5cosA=()A4B3CD5考点:同角三角函数的关系菁优网版权所有分析:根据已知条件设出直角三角形一直角边与斜边的长,再根据勾股定理求出另一直角边的长,由三角函数的定义直接解答即可解答:解:由sin=知,如果设a=3x,则c=5x,结合a2+b2=c2得b=4x;cosA=,5cosA=4故选A点评:求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值8(3分)如图,是一个圆锥形冰激凌,已知它的母线长是13cm,高是12cm,则这

7、个圆锥形冰激凌的底面面积是()A10cm2B25cm2C60cm2D65cm2考点:圆锥的计算菁优网版权所有分析:由勾股定理易得圆锥的底面半径,进而即可求得圆的面积解答:解:圆锥的母线长是13cm,高是12cm,圆锥的底面半径为5cm,圆锥形冰激凌的底面面积是×52=25cm2,故选B点评:考查了圆的面积公式,用到的知识点为:圆锥的高,母线长,底面半径组成直角三角形9(3分)用棋子摆出下列一组“口”字,按照这种方法摆,则摆第n个“口”字需用旗子()A4n枚B(4n4)枚C(4n+4)枚Dn2枚考点:规律型:图形的变化类菁优网版权所有分析:每增加一个数就增加四个棋子解答:解:n=1时,

8、棋子个数为4=1×4;n=2时,棋子个数为8=2×4;n=3时,棋子个数为12=3×4;n=n时,棋子个数为n×4=4n故选A点评:主要培养学生的观察能力和空间想象能力10(3分)如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形ABCD,边BC与DC交于点O,则四边形ABOD的周长是()A2B3CD1+考点:旋转的性质菁优网版权所有专题:压轴题分析:当AB绕点A逆时针旋转45度后,刚回落在正方形对角线AC上,可求三角形与边长的差BC,再根据等腰直角三角形的性质,勾股定理可求BO,OD,从而可求四边形ABOD的周长解答:解:连接BC,旋转角

9、BAB=45°,BAC=45°,B在对角线AC上,AB=AB=1,用勾股定理得AC=,BC=1,在等腰RtOBC中,OB=BC=1,在直角三角形OBC中,由勾股定理得OC=(1)=2,OD=1OC=1四边形ABOD的周长是:2AD+OB+OD=2+1+1=2故选A点评:本题考查了正方形的性质,旋转的性质,特殊三角形边长的求法连接BC构造等腰RtOBC是解题的关键二、填空题(共5小题,每小题3分,满分15分)11(3分)一组数据:1,2,3,5,5,6的中位数是4考点:中位数菁优网版权所有专题:计算题分析:根据中位数的定义判断先把数据按大小排列,中间两个数的平均数为中位数解答

10、:解:数据按从小到大的顺序排列:1,2,3,5,5,6,中位数=(3+5)÷2=4故答案为4点评:本题考查了中位数的定义注意找中位数的时候一定要先排好大小顺序,然后再根据奇数和偶数个数据来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数12(3分)随机掷一枚均匀的硬币两次,两次都是反面朝上的概率是考点:概率公式菁优网版权所有分析:列举随机掷一枚均匀的硬币两次的可能的情况,即可求出答案解答:解:随机掷一枚均匀的硬币两次,可能的情况为:正正、正反、反正、反反,两次都是反面朝上的概率是点评:解题的关键是找到所有存在的情况用到的知识点为:概率=所求情况

11、数与总情况数之比13(3分)如图,已知AD为O的切线,O的直径是AB=2,弦AC=1,则CAD=30度考点:弦切角定理;含30度角的直角三角形;圆周角定理菁优网版权所有分析:根据直径所对的圆周角是直角得到直角三角形ABC,从而根据锐角三角函数求得B的值,再根据弦切角定理进行求解解答:解:AB是圆的直径,C=90°;又AB=2,AC=1,B=30°,AD为O的切线,CAD=B=30°点评:此题综合运用了圆周角定理的推论、锐角三角函数的知识和弦切角定理14(3分)如图,已知OAB与OAB是相似比为1:2的位似图形,点O为位似中心,若OAB内一点P(x,y)与OAB内一

12、点P是一对对应点,则P的坐标是(2x,2y)考点:位似变换菁优网版权所有分析:由图中易得两对对应点的横纵坐标均为原来的2倍,那么点P的坐标也应符合这个规律解答:解:P(x,y),相似比为1:2,点O为位似中心,P的坐标是(2x,2y)点评:解决本题的关键是根据所给图形得到各对应点之间的坐标变化规律15(3分)小慧同学不但会学习,而且也很会安排时间干好家务活,煲饭、炒菜、擦窗等样样都行,是爸妈的好帮手,某一天放学回家后,她完成各项家务活及所需时间如图家务项目擦窗洗菜洗饭煲、洗米炒菜(用煤气炉)饭煲(用电饭煲)完成各项家务所需时间5分钟4分钟3分钟20分钟30分钟小慧同学完成以上各项家务活,至少需

13、要33分钟(注:各项工作转接时间忽略不计)考点:推理与论证菁优网版权所有专题:压轴题分析:此题是统筹安排的问题,比如用煲饭的三十分钟可同时完成擦窗、洗菜、炒菜,按此思路进行解答解答:解:因为用煲饭的三十分钟可同时完成擦窗、洗菜、炒菜,所以小慧同学完成以上五项家务活,至少需要3+30=33分钟点评:这是一道非常实际的题目,统筹安排的思想在生活中应用较广,灵活掌握有利提高工作效率三、解答题(共10小题,满分75分)16(7分)计算:|4|(2)2+()021考点:实数的运算菁优网版权所有专题:计算题分析:本题涉及零指数幂、负指数幂、绝对值,乘方运算4个考点在计算时,需要针对每个考点分别进行计算,然

14、后根据实数的运算法则求得计算结果解答:解:原式=44+1=点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算17(7分)如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD(1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示)考点:中心投影菁优网版权所有专题:作图题分析:(1)根据小军和小丽的身高与影长即可得到光源所在;(2)根据光源所在和小华的身高即可得到相应的影长解答:解:如图所示:(1)点P就是所求的点;(2)EF就是小华此时

15、在路灯下的影子点评:本题考查中心投影的特点与应用,解决本题的关键是得到点光源的位置用到的知识点为:两个影长的顶端与物高的顶端的连线的交点为点光源的位置18(7分)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个,从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2,0.3(1)试求出纸箱中蓝色球的个数;(2)假设向纸箱中再放进红色球x个,这时从纸箱中任意取出一个球是红色球的概率为0.5,试求x的值考点:分式方程的应用;概率公式菁优网版权所有分析:(1)求得蓝色球的概率,蓝色球的个数为:球的总数×蓝色球的概率;(2)关系式为:红色球的数量÷球的总数=

16、0.5解答:解:(1)由已知得纸箱中蓝色球的个数为:100×(10.20.3)=50(个);(2)根据题意得:=0.5,解得:x=60(个)点评:读懂题意,找到相应的关系式是解决问题的关键用到的知识点为:概率=所求情况数与总情况数之比19(7分)我国杂交水稻之父袁隆平院士,全身心投入杂交水稻的研究,一次,他用A,B,C,D四种型号的水稻种了共1000粒进行发芽实验,从中选出发芽率高的种子进行推广,通过实验得知,C种型号的种子发芽率为96%,根据实验数据绘制了如下尚不完整的统计表和统计图(1)请你补充完整统计表;(2)通过计算分析,你认为应选哪一种型号的种子进行推广四种型号的种子所占百

17、分比统计表:型号种子数(粒)百分比A35035%B 20%CD250合计1000 100%考点:条形统计图菁优网版权所有专题:图表型分析:(1)从图表可以看出A型种子350粒,所占百分比为35%,B型种子所占百分比为20%,则有200粒,所以D型种子250粒,所占百分比为25%,则C型种子粒数和所占百分比可求;因为C种型号的种子发芽率为96%,所以种型号的种子发芽数可求;(2)求出每个型号种子的发芽率,比较得出结果解答:四种型号的种子所占百分比统计表:型号种子数(粒)百分比A35035B 200 20%C 200 20%D250 25%合计1000 100%解:(1)如上图;(2)A种型号的种

18、子发芽率:×100%=90%,B种型号的种子发芽率:×100%=97%,C种型号的种子发芽率:96%,D种型号的种子发芽率:×100%=94%,从以上可知,B种型号的种子发芽率最高,因此应选B种型号的种子进行推广点评:本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键20(7分)已知关于x的一元二次方程x26xk2=0(k为常数)(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值考点:根与系数的关系;解二元一次方程组;解一元二次方程-直接开平方法;根的判

19、别式菁优网版权所有专题:阅读型分析:(1)要证明方程有两个不相等的实数根,只要证明判别式=b24ac的值大于0即可;(2)根据一元二次方程的根与系数的关系可以得到两根的和是6,结合x1+2x2=14即可求得方程的两个实根,进而可求k的值解答:(1)证明:b24ac=(6)24×1×(k2)=36+4k20因此方程有两个不相等的实数根(2)解:x1+x2=6,又x1+2x2=14,解方程组解得:将x1=2代入原方程得:(2)26×(2)k2=0,解得k=±4点评:本题考查了一元二次方程根的判别式和根与系数的关系的应用,根据一元二次方程的根与系数的关系,与x

20、1+2x2=14联立即可把求方程的解的问题转化为解方程组的问题21(8分)(2011广元)张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,图中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示(1)汽车行驶3小时后加油,中途加油31升;(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由考点:一次函数的应用菁优网版权所有分析:(1)由题中图象即可看出,加油的时间和加油量;(2)设函关系式y=kx+b,将(0,50

21、)(3,14)代入即可求解;(3)由路程和速度算出时间,再求出每小时的用油量,判断油是否够用解答:解:(1)3,31(2)设y与t的函数关系式是y=kt+b(k0),根据题意,将(0,50)(3,14)代入得:因此,加油前油箱剩油量y与行驶时间t的函数关系式是:y=12t+50(3)由图可知汽车每小时用油(5014)÷3=12(升),所以汽车要准备油210÷70×12=36(升),因为45升36升,所以油箱中的油够用点评:本题考查了对函数图象的理解以及由函数图象求函数关系式的问题22(8分)如图,已知OAOB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=

22、a,过点D作DE垂直OA的延长线交于点E(1)证明:OABEDA;(2)当a为何值时,OAB与EDA全等?请说明理由,并求出此时点C到OE的距离考点:相似三角形的判定;全等三角形的判定与性质;矩形的性质菁优网版权所有专题:综合题分析:(1)由于四边形ABCD是矩形,则BAD=90°,那么OBA、DAE同为BAO的余角,即OBA=DAE,而BOA、DEA都是直角,由此可证得OABEDA(2)若OAB与EDA全等,则AB=AD,在RtOAB中,利用勾股定理易求得AB=5,那么a=AD=AB=5;求C到OE的距离,可过C作CHOE于H,过B作BFCH于F;那么CH就是所求的距离,通过上面的

23、解题思路,易证得CBFABO,得CH=OA=4,BO=BF,那么四边形BOHF是正方形,由此可得FH=BO=3,根据CH=CF+FH即可求得C到OE的距离解答:(1)证明:如图所示,OAOB,1+2=90°,又四边形ABCD是矩形,BAD=90°,2+3=90°,1=3,OAOB,OEOA,BOA=DEA=90°,OABEDA(2)解:在RtOAB中,AB=5,由(1)可知1=3,BOA=DEA=90°,当a=AD=AB=5时,AOB与EDA全等当a=AD=AB=5时,可知矩形ABCD为正方形,BC=AB,如图,过点C作CHOE交OE于点H,则

24、CH就是点C到OE的距离,过点B作BFCH交CH于点F,则4与5互余,1与5互余,1=4,又BFC=BOA,BC=AB,OABFCB(AAS),CF=OA=4,BO=BF四边形OHFB为正方形,HF=OB=3,点C到OE的距离CH=CF+HF=4+3=7点评:此题主要考查了矩形、正方形的性质,相似三角形、全等三角形的判定和性质,难度适中23(8分)我市某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147000元,已知甲、乙、丙三种型号的电视机的出厂价格分别为1000元/台,1500元/台,

25、2000元/台(1)求该商场至少购买丙种电视机多少台?(2)若要求甲种电视机的台数不超过乙种电视的台数,问有哪些购买方案?考点:一元一次不等式的应用菁优网版权所有专题:应用题分析:(1)设购买丙种电视机x台,则购买甲种电视机4x台,购买乙种电视机(1085x)台,根据“购进三种电视机的总金额不超过147000元”作为不等关系列不等式即可求解;(2)根据“甲种电视机的台数不超过乙种电视的台数”作为不等关系列不等式4x1085x,结合着(1)可求得x的取值范围,求x的正整数解,即可求得购买方案解答:解:(1)设购买丙种电视机x台,则购买甲种电视机4x台,购买乙种电视机(1085x)台,根据题意,得

26、1000×4x+1500×(1085x)+2000x147000解这个不等式得x10因此至少购买丙种电视机10台;(2)甲种电视机4x台,购买乙种电视机(1085x)台,根据题意,得4x1085x解得x12又x是正整数,由(1)得10x12x=10,11,12,因此有三种方案方案一:购进甲,乙,丙三种不同型号的电视机分别为40台,58台,10台;方案二:购进甲,乙,丙三种不同型号的电视机分别为44台,53台,11台;方案三:购进甲,乙,丙三种不同型号的电视机分别为48台,48台,12台点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等

27、式关系式即可求解24(8分)如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上,点B坐标为(6,6),抛物线y=ax2+bx+c经过点A,B两点,且3ab=1(1)求a,b,c的值;(2)如果动点E,F同时分别从点A,点B出发,分别沿AB,BC运动,速度都是每秒1个单位长度,当点E到达终点B时,点E,F随之停止运动,设运动时间为t秒,EBF的面积为S试求出S与t之间的函数关系式,并求出S的最大值;当S取得最大值时,在抛物线上是否存在点R,使得以E,B,R,F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由考点:二次函数综合题菁优网版权所有专题:

28、代数几何综合题;压轴题分析:(1)由于四边形OABC是正方形,易知点A的坐标,将A、B的坐标分别代入抛物线的解析式中,联立3ab=1,即可求得待定系数的值(2)用t分别表示出BE、BF的长,利用直角三角形面积公式求出EBF的面积,从而得到关于S、t的函数关系式,根据函数的性质即可求得S的最大值;当S取最大值时,即可确定BE、BF的长,若E、B、R、F为顶点的四边形是平行四边形,可有两种情况:一、EB平行且相等于FR,二、ER平行且相等于FB;只需将E点坐标向上、向下平移BF个单位或将F点坐标向左、向右平移BE个单位,即可得到R点坐标,然后将它们代入抛物线的解析式中进行验证,找出符合条件的R点即

29、可解答:解:(1)由已知A(0,6),B(6,6)在抛物线上,得方程组,解得(2)运动开始t秒时,EB=6t,BF=t,S=EBBF=(6t)t=t2+3t,以为S=t2+3t=(t3)2+,所以当t=3时,S有最大值当S取得最大值时,由知t=3,BF=3,CF=3,EB=63=3,若存在某点R,使得以E,B,R,F为顶点的四边形是平行四边形,则FR1=EB且FR1EB,即可得R1为(9,3),R2(3,3);或者ER3=BF,ER3BF,可得R3(3,9)再将所求得的三个点代入y=x2+x+6,可知只有点(9,3)在抛物线上,因此抛物线上存在点R(9,3),使得四边形EBRF为平行四边形点评

30、:此题主要考查了正方形的性质、二次函数解析式的确定、图形面积的求法、二次函数的最值、平行四边形的判定和性质等,同时还考查了分类讨论的数学思想,难度适中25(8分)已知O1的半径为R,周长为C(1)在O1内任意作三条弦,其长分别是l1l2l3,求证:l1+l2+l3C;(2)如图,在直角坐标系xOy中,设O1的圆心为O1(R,R)当直线l:y=x+b(b0)与O1相切时,求b的值;当反比例函数y=(k0)的图象与O1有两个交点时,求k的取值范围考点:反比例函数综合题菁优网版权所有专题:计算题;压轴题分析:(1)根据圆的任意一条弦都小于或等于圆的直径解答;(2)设直线与圆相切于点M,连接O1M,则O1Ml,过点O1作直线NHx轴,与l交于点N,与x轴交于点H,因为直线的k=1,所以直线与x轴的夹角等于45°,OMN是等腰

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论