




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课题 §1421 正比例函数教学目标认识正比例函数的意义 掌握正比例函数解析式特点 理解正比例函数图象性质及特点重点:理解正比例函数意义及解析式特点掌握正比例函数图象的性质特点难点: 正比例函数图象性质特点的掌握学习方法:自学,归纳,交流,练习。课前准备:布置前置性作业。一 知识要点。1. 一般地,形如 (k是常数,k0)的函数,叫做 ,其中k叫做 。2. 正比例函数的解析式为_相同点图像所在象限图像大致形状增减性二 知识应用。1、在同一坐标系中,画出下列函数的图象,并对它们进行比较(1)y=x (2)y=-x2、下列函数中,那些是正比例函数?_ (1) (2) (3) (4) (5
2、)(6) (7) (8)3关于函数,下列结论中,正确的是( )A、函数图像经过点(1,3) B、函数图像经过二、四象限C、y随x的增大而增大 D、不论x为何值,总有y04、已知正比例函数的图像过第二、四象限,则( )A、y随x的增大而增大 B、y随x的增大而减小C、当时,y随x的增大而增大;当时,y随x的增大而减少;D、不论x如何变化,y不变。5、若A(1,m)在函数y=2x的图像上,则m=_,则点A关于y轴对称点坐标是_;6、函数y=-5x的图像在第_象限,经过点(0,_)与点(1,_),y随x的增大而_教学过程:一 检查前置性作业的完成情况。二 分析本节课知识要点及例题。 新课(一)按下列
3、要求写出解析式(1)圆的周长L随半径r的大小变化而变化,L与t的关系式为_;(2)铁的密度为78g/cm3铁块的质量m(g)随它的体积V(cm3)的大小变化而变化,V与m关系式为_;(3)每个练习本的厚度为05cm一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化,h与n的关系式为_;(4)冷冻一个0的物体,使它每分钟下降2物体的温度()随冷冻时间t(分)的变化而变化,T与t的关系式为_。一般地,形如 (k是常数,k0)的函数,叫做正比例函数,其中k叫做比例系数。练习:1、下列函数钟,那些是正比例函数?_ (1) (2) (3) (4) (5)(6) (7) (8)2、关于x
4、的函数是正比例函数,则m_(二)画出下列正比例函数 (1) (2)x-2-1012yx-2-1012y 比较上面两个图像,填写你发现的规律:(1) 两个图像都是经过原点的 _,(2) 函数y=2x的图像经过第_象限,从左到右_ _,即y随x的增大而_;(3) 函数y=-3x的图像经过第_ _象限,从左到右_,即y随x的增大而_;总结:正比例函数的解析式为_相同点图像所在象限图像大致形状增减性 活动一活动内容设计: 画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律 y=2x y=-2x两个图象的共同点:都是经过原点的直线 不同点:函数y=2x的图象从
5、左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限函数y=-2x的图象从左向右呈下降状态,即随x增大y反而减小;经过第二、四象限尝试练习:在同一坐标系中,画出下列函数的图象,并对它们进行比较y=x y=-x比较两个函数图象可以看出:两个图象都是经过原点的直线函数y=x的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数y=-x的图象从左向右下降,经过二、四象限,即随x增大y反而减小活动二 活动内容设计: 经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?活动过程及结论:经过原点与点(1,k)的直线是函数y=kx的图象 画正比例函数图象时,
6、只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k)因为两点可以确定一条直线三 评价分析前置性作业。四 小结。本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础五 布置作业六 教学反思课题 14.2.2 一次函数(1)教学目标掌握一次函数解析式的特点及意义毛知道一次函数与正比例函数关系重点:一次函数解析式特点难点: 一次函数与正比例函数关系学习方法:自学,归纳,交流,练习。课前准备:布置前置性作业。一 知识要点。1. 一般地
7、,形如y=kx+b(k,b是常数,k0)的函数,叫做 ,特别地,当b= 时,y=kx+b即y=kx,即正比例函数是一种特殊的一次函数。2. 一次函数y=kx+b的图像是一条_,当b时,它是由y=kx向_平移_个单位长度得到;当b0时,它是由y=kx向_平移_个单位长度得到。3、一次函数的性质:(1)当k>0时,y随x的增大而_,这时函数的图像从左到右_;(2)当k<0时,y随x的增大而_,这时函数的图像从左到右_;4. 直线y=kx+b(k0)中,k ,b的取值决定直线的位置:(1)直线经过_象限;(2)直线经过_象限;(3)直线经过_象限;(4)直线经过_象限;二知识应用。1.
8、在同一个直角坐标系中画出函数,的图像-2-1012y=2xy=2x+3y=2x-31、在一次函数y=-3x-5中,k =_,b =_2、若函数y=(m-3)x+2m是一次函数,则m_3. 一次函数y=2x-5的图像不经过( )A、第一象限 B、第二象限 C、 第三想象限 D、 第四象限2、已知直线y=kx+b不经过第三象限,也不经过原点,则下列结论正确的是( )A、 B、 C、 D、3、下列函数中,y随x的增大而增大的是( )A、 B、 C、 D、4、对于一次函数,函数值y随x的增大而减小,则k的取值范围是( )A、 B、 C、 D、5. 已知点(-1,a)、(2,b)在直线y=3x+8 上,
9、则a,b的大小关系是_教学过程:一 检查前置性作业的完成情况。二 分析本节课知识要点及例题。(1)分析课本P113问题导入通过思考分析,可以得到这些问题的函数解析式分别为: C=7t-35 G=h-105 y=001x+22 y=-5x+50 这些函数形式就可以写成: y=kx+b(k0)一般地,形如y=kx+b(k、b是常数,k0)的函数,叫做一次函数当b=0时,y=kx+b即y=kx所以说正比例函数是一种特殊的一次函数(2) 活动一 画出函数y=-6x与y=-6x+5的图象并比较两个函数图象,探究它们的联系及解释原因比较两个函数的图象的相同点与不同点。结果:这两个函数的图象形状都是_,并且
10、倾斜程度_.函数 y=-6x的图象经过原点,函数 y=-6x+5 的图象与 y轴交于点_,即它可以看作由直线y=-6x 向_平移_个单位长度而得到.比较两个函数解析式,试解释这是为什么. 猜想:一次函数y=kx+b的图象是什么形状,它与直线y=kx有什么关系? 结论:一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移b绝对值个单位长度而得到(当b0时,向上平移;当b 0时,向下平移)。活动二画出函数y=x+1、y=-x+1、y=2x+1、y=-2x+1的图象由它们联想:一次函数解析式y=kx+b(k、b是常数,k0)中,k的正负对函数图象有什么影响?
11、规律:当k>0时,直线y=kx+b由左至右上升;当k<0时,直线y=kx+b由左至右下降 性质:当k>0时,y随x增大而增大当k<0时,y随x增大而减小三评价分析前置性作业。四小结:本节学习了一次函数的意义,知道了其解析式、图象特征,并学会了简单方法画图象,进而利用数形结合的探究方法寻求出一次函数图象特征与解析式的联系,这使我们对一次函数知识的理解和掌握更透彻,也体会到数学思想在数学研究中的重要性五 布置作业六 教学反思课题 1422 一次函数(2)教学目标学会用待定系数法确定一次函数解析式毛具体感知数形结合思想在一次函数中的应用重点:待定系数法确定一次函数解析式。难点
12、: 灵活运用有关知识解决相关问题学习方法:自学,归纳,交流,练习。课前准备:布置前置性作业。一 知识要点例1:已知一次函数的图像经过点(3,5)与(2,3),求这个一次函数的解析式。分析:求一次函数的解析式,关键是求出k,b的值,从已知条件可以列出关于k,b的二元一次方程组,并求出k,b。解: 一次函数经过点(3,5)与(2,3) 解得一次函数的解析式为_像例1这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做 。二 知识应用1、已知一次函数,当x = 5时,y = 4,(1)求这个一次函数。 (2)求当时,函数y的值。2、已知直线经过点(9,0)和点(2
13、4,20),求这条直线的函数解析式。3. 已知一次函数的图象如图所示,求出它的函数关系式 4:某自来水公司为了鼓励市民节约用水,采取分段收费标准。居民每月应交水费y(元)是用水量x(吨)的函数,其图象如图所示:(1) 分别写出和时,y与x的函数解析式;(2) 若某用户居民该月用水3.5吨,问应交水费多少元?若该月交水费9元,则用水多少吨?教学过程:一 检查前置性作业的完成情况。二 分析本节课知识要点及例题。(一)提出问题,创设情境 我们前面学习了有关一次函数的一些知识,掌握了其解析式的特点及图象特征,并学会了已知解析式画出其图象的方法以及分析图象特征与解析式之间的联系规律如果反过来,告诉我们有
14、关一次函数图象的某些特征,能否确定解析式呢?如何利用一次函数知识解决相关实践问题呢?(二)导入新课 例4(见教材第117页) 分析:求一次函数解析式,关键是求出k、b值因为图象经过两个点,所以这两点坐标必适合解析式由此可列出关于k、b的二元一次方程组,解之可得 设这个一次函数解析式为y=kx+b 因为y=k+b的图象过点(3,5)与(-4,-9),所以 解之,得故这个一次函数解析式为y=2x-1。结论: 师像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法 (二)尝试练习: 已知一次函数y=kx+2,当x=5时y的值为4,求k值 已知直线y=k
15、x+b经过点(9,0)和点(24,20),求k、b值 例题5 P118分段函数解析式的求法 (1)先确定取值范围;(2)找出分段范围;(3)在每段取值范围中求函数。三评价分析前置性作业。四小结:如何用待定系数法去确定一次函数的解析式五 布置作业六 教学反思课题 14.31 一次函数与一元一次方程教学目标1. 理解一次函数与一元一次方程的关系,会根据一次函数的图象解决一元一次方程的求解问题。 2. 学习用函数的观点看待方程的方法,初步感受用全面的观点处理局部问题的思想。3. 经历方程与函数关系问题的探究过程学习用联系的观点看待数学问题的辩证思想。重点:一次函数与一元一次方程的关系的理解。难点:
16、一次函数与一元一次方程的关系的理解。学习方法:自学,归纳,交流,练习。课前准备:布置前置性作业。一 知识要点(一)1、解方程2x+4=0 2、自变量x为何值时函数y=2x+4的值为0? 3、以上方程2x+4=0与函数y=2x+4有什么关系? 4、是不是任何一个一元一次方程都可以转化为ax+b=0(a、b是常数,a0)? 5解关于x的方程kx+b=0可以转化为:已知函数y=kx+b的函数值为0,求相应的自变量的值从图象上看,相当于已知直线y=kx+b,确定它与x轴的交点的 6、仔细理解例1中的解法1与解法2有什么不同。 二 知识应用1、当自变量x的取值满足什么条件时,函数y=5x+7的值满足下列
17、条件(1)、y=0 (2)、y=20 2. 一个物体现在的速度是5m/s,其速度每秒增加2m/s,再过几秒它的速度为17m/s?(用两种方法求解) 3. 利用图象求方程6x-3=x+2的解 ,并笔算检验教学过程:教学过程:一 检查前置性作业的完成情况。二 分析本节课知识要点及例题。I 导入前面我们学习了一次函数实际上一次函数是两个变量之间符合一定关系的一种互相对应,互相依存它与我们七年级学过的一元一次方程,一元一次不等式,二元一次方程组有着必然的联系这节课开始,我们就学着用函数的观点去看待方程(组)与不等式,并充分利用函数图象的直观性,形象地看待方程(组)不等式的求解问题这是我们学习数学的一种
18、很好的思想方法 II新课:我们先来看下而的问题有什么关系:(1)解方程(2)当自变量为何值时,函数的值为零?提出问题: 对于和,从形式上看,有什么相同和不同的地方? 从问题本质上看,(1)和(2)有什么关系? 作出直线从数上看:方程2x+20=0的解,是函数y=2x+20的值为0时,对应自变量的值从形上看:函数y=2x+20与x轴交点的横坐标即为方程2x+20=0的解关系: 由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k0)的形式所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值 从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值例1 一个物体现
19、在的速度是5m/s,其速度每秒增加2m/s,再过几秒它的速度为17m/s?(用两种方法求解)解法一:设再过x秒物体速度为17m/s由题意可知:2x+5=17 解之得:x=6解法二:速度y(m/s)是时间x(s)的函数,关系式为:y=2x+5 当函数值为17时,对应的自变量x值可通过解方程2x+5=17得到x=6 解法三:由2x+5=17可变形得到:2x-12=0 解法一:设再过x秒物体速度为17m/s由题意可知:2x+5=17 解之得:x=6解法二:速度y(m/s)是时间x(s)的函数,关系式为:y=2x+5当函数值为17时,对应的自变量x值可通过解方程2x+5=17得到x=6 解法三:由2x
20、+5=17可变形得到:2x-12=0从图象上看,直线y=2x-12与x轴的交点为(6,0)得x=6三评价分析前置性作业。四小结: 本节课从解具体一元一次方程与当自变量x为何值时一次函数的值为0这两个问题入手,发现这两个问题实际上是同一个问题,进而得到解方程kx+b=0与求自变量x为何值时,一次函数y=kx+b值为0的关系,并通过活动确认了这个问题在函数图象上的反映经历了活动与练习后让我们更熟练地掌握了这种方法虽然用函数解决方程问题未必简单,但这种数形结合思想在以后学习中有很重要的布置作业五 布置作业六 教学反思课题 14.3.2 一次函数与一次不等式教学目标1、理解一次函数与一元一次不等式的关
21、系,会根据一次函数的图象解决一元一次不等式的求解问题;2、学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题的思想;3、经历不等式与函数关系问题的探究过程;学习用联系的观点看待数学问题的辩证思想。重点:一次函数与一元一次不等式的关系的理解。难点: 一次函数与一元一次不等式的关系的理解。学习方法:自学,归纳,交流,练习。课前准备:布置前置性作业。一 知识要点1、什么是一元一次不等式?它的解集是什么? 2、看下面两个问题有什么关系 (1)、解不等式5x+63x+10 (2)、自变量x为何值时,函数y=2x-4的值大于0? 3、由上面两个问题的关系,能进一步得到“解不等式ax+b0与
22、求自变量x在什么范围内一次函数y=ax+b的值大于0”有什么关系? 4、一元一次不等式与一次函数有什么联系?任何一元一次不等式都可以转化为_或_(a、b为常数,a0) 的形式,所以解一元一次不等式可以看作是:当一次函数值大(小)于0时,求_相应的_二 知识应用1. 用画函数图像的方法解不等式5x+42x+102. 一次函数的图像如图,则它的解析式是_. 当x=_时,y=0 当x_时,y0 当y_时,x0教学过程:一 检查前置性作业的完成情况。二 分析本节课知识要点及例题。(一)、创设情境我们来看下面两个问题有什么关系?1 解不等式56310。 2. 当自变量为何值时函数24的值大于0?是不是所
23、有的一元一次不等式都可转化为一次函数的相关问题呢?如何通过函数图象来求解一元一次不等式? 以上这些问题,我们本节将要学到。(二)、新课讲授我们先观察函数24的图象。可以看出:当2时,直线24上的点全在轴上方,即这时240。由此可知,通过函数图象也可求得不等式的解2。由上面两个问题的关系,我们能得到“解不等式ab0”与“求自变量在什么范围内,一次函数ab的值大于0”之间的关系,实质上是同一个问题。由于任何一元一次不等式都可以转化为ab0或ab0(a、b为常数,a0)的形式,所以解一元一次不等式可以看作,当一次函数值大于或小于0时,求自变量相应的取值范围。活动用函数图象的方法解不等式54210。引
24、导学生通过画图、观察、寻求答案,并能通过两种不同解法,得到同一答案,探索思考总结归纳出其特点。以上两种方法其实都是把解不等式转化为比较直线上点的位置的高低!例2 P125例题 解法1:分析:将不等式转化为一般形式,再画出对应的一次函数的图象,就是我们已会的求解了 解法2:分析:(1)如果不将原不等式转化,能否用图象法解决呢? (2)不等式两边都是一次函数的表达式,因而实际上是比较两个一次函数在x取相同值时谁大的问题 (3)如何在图象上比较两个一次函数的大小呢? (4)如何确定不等式的解集呢?三评价分析前置性作业。四小结: 1.一次函数与一元一次不等式的联系。 2. 图象上的不等式五 布置作业六
25、 教学反思课题1433 一次函数与二元一次方程(组)教学目标1 学会利用函数图象解二元一次方程组。通过学习了解变量问题利用函数方法的优越性。重点:归纳图象法解二元一次方程组的具体方法。灵活运用函数知识解决实际问题。难点: 灵活运用函数知识解决相关实际问题学习方法:自学,归纳,交流,练习。课前准备:布置前置性作业。一 知识要点 1.已知2xy=1,用含x的代数式表示y,则y= 。x=1y=1是方程2xy=1的一个解吗?2.方程 2xy=1的解有 个。3. 4.(1,1)是否是直线y=2x1上的一个点? 综合以上几个问题,你能得到哪些启示?通过上述问题的讨论,你认为一次函数与二元一次方
26、程有何关系? 二知识应用1. 3x+5y=8对应的一次函数(以x为自变量)是 。2. 直线y=x+上任取一点(x,y)则(x,y)一定是方程3x+5y=8的解吗?为什么3. 在同一直角坐标系中画出直线y=2x1与y=x+的图象,并思考:的解有何关系?2xy=13x+5y=8(1)它们有交点吗? (2)交点的坐标与方程组(3)当自变量x取何值时,函数y=2x1与y=x+的值相等?这时的函数值是多少?4. 问题一:一家电信公司给顾客提供上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0.05元的价格按网时间计费。上网时间为多少分,两种方式的计费相等?如何选择
27、收费方式能使上网者更合算。5. 问题二:下面有两处移动电话计费方式全球通神州行月租费50元/月0本地通话0.40元/分0.60元/分你知道如何选择计费方式更省钱吗?教学过程:一 检查前置性作业的完成情况。二 分析本节课知识要点及例题。教学过程 提出问题,创设情境 师我们知道,方程3x+5y=8可以转化为y=-x+,并且直线y=-x+上每个点的坐标(x,y)都是方程3x+5y=8的解 由于任何一个二元一次方程都可以转化为y=kx+b的形式所以每个二元一次方程都对应一个一次函数,也就是对应一条直线 那么解二元一次方程组 可否看作求两个一次函数y=-x+与y=2x-1图象的交点坐标呢?如果可以,我们
28、是否可以用画图象的方法来解二元一次方程组呢? 我们这节课就来解决这些问题导入新课 活动一 活动内容设计: 一家电信公司给顾客提供两种上网收费方式:方式以每分钟01元的价格按上网时间计费;方式除收月基费20元外再以每分钟005元的价格按上网时间计算如何选择收费方式能使上网者更合算? 活动设计意图: 通过这个活动,熟悉巩固用一次函数知识求二元一次方程组问题的方法,进一步提高把实际问题转化为数学问题的能力通过以上活动,使我们清楚看到函数在解决变量关系问题时的优越性,但在确定分界点位置时,又要借助方程来准确求值联系以前所学方程(组),不等式与函数都是基本的数学模型,它们之间互相联系,用函数观点可以把它
29、们统一起来,解决实际问题时,应根据具体情况灵活地、有机地把这些数学模型结合起来使用 三评价分析前置性作业。四小结:本节课从二元一次方程与一次函数关联谈起,得出利用函数图象解决二元一次方程(组)的具体方法及步骤,并通过两个实例让我们看到了不同数学模型间的联系,且通过函数观点把它们统一起来,根据具体情况灵活、有机地把这些数学模型结合起来使用,为我们解决有关实际问题提供了更大的便利 五 布置作业六 教学反思课题 一次函数复习教学目标1、知识目标:通过对图形的变化,分析图象,得出一次函数的性质,并利用其来解决生活中实际问题。2、能力目标:能懂得分析图象,从图象中得出信息,归纳总结知识,进一步提高学生的
30、分析能力、归纳能力与数形结合能力。3、情感、态度与价值观:在分析探索图象中,让学生体会掌握知识的快乐与体验成功的喜悦,进一步提高学生的学习积极性。重点:一次函数的性质与运用难点: 数形结合思想的渗透与领悟学习方法:自学,归纳,交流,练习。课前准备:布置前置性作业。基本概念1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与
31、之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。7、描点法画函
32、数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。8、函数的表示方法列表法,解析式法,图象法9、正比例函数及性质一般地,形如y=kx(k是常数,k0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式 y=kx (k不为零) k不为零 x指数为1 b取零(1) 解析式:y=kx(k是常数,k0)(2) 必过点:(0,0)、(1,k)(3) 走向:k>0时,图像经过一、三象限;k&
33、lt;0时,图像经过二、四象限(4) 增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5) 倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴10、一次函数及性质一般地,形如y=kxb(k,b是常数,k0),那么y叫做x的一次函数.当b=0时,y=kxb即y=kx,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k不为零) k不为零 x指数为1 b取任意实数一次函数y=kx+b的图象是经过(0,b)和(-,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b
34、<0时,向下平移)解析式:y=kx+b(k、b是常数,k0)b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小11、正比例函数与一次函数图象之间的关系一次函数y=kxb的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).12、直线y=k1x+b1与y=k2x+b2的位置关系(1)两直线平行:k1=k2且b1 b2(2)两直线相
35、交:k1k2(3)两直线重合:k1=k2且b1=b213、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.14、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a,b为常数,a0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.15、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 无线广播电视传输中的信号传输带宽管理考核试卷
- 船舶改装工程技术难点与创新解决方案考核试卷
- 病房护理设备的人机交互设计原则与应用考核试卷
- 橡胶制品行业的质量管控与优化考核试卷
- 航班乘客舒适度提升的全方位关怀与满足考核试卷
- 四川省成都市东辰国际学校2024-2025学年高考押题卷(2)英语试题试卷含解析
- 吉林省长春市外国语校2024-2025学年初三第四次四校联考语文试题含解析
- 珠海三中高二下学期期中考试(文科)生物试题
- 山西省太原市小店区第一中学2025年高三物理试题二模冲刺试题(六)含解析
- 唐山科技职业技术学院《武术理论与实践》2023-2024学年第一学期期末试卷
- DZ∕T 0270-2014 地下水监测井建设规范
- 2024年重庆市初中学业水平考试地理试卷试题真题(含答案详解)
- DL-T5153-2014火力发电厂厂用电设计技术规程
- HYT 241-2018 冷却塔飘水率测试方法 等速取样法(正式版)
- JTJ-294-1998斜坡码头及浮码头设计与施工规范
- 急性肺栓塞的应急预案及流程
- 水土保持工程质量评定规程
- 医用被服洗涤服务方案
- 蓄水池可行性方案
- 政务服务中心物业服务投标方案
- 小儿循环系统解剖生理特点
评论
0/150
提交评论