全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
赋值法在抽象函数中的应用我们把未给出具体解析式的函数称为抽象函数。这种函数表现形式的抽象性,使得直接求解析式比较难。解决这类函数可以通过化抽象为具体的方法,即赋予恰当的数值或代数式,经过恰当的运算和推理加以解决。下面分类举例加以说明。一、判断函数的奇偶性例1. 若对于任意实数x,y均成立,且f(x)不恒为0,请判断函数f(x)的奇偶性。解:令则有,故有令,则有,故有,又因为不恒为0,所以函数f(x)是奇函数。例2. 已知函数为非零函数,若有,试判断函数的奇偶性。解:令,则有,故有令,则有,故有令,则有,且为非零函数,所以函数是偶函数。二、判断函数的单调性例3. 函数,当时,且对任何实数x,y恒有,试判断函数的单调性。解:令,则有,故有又有当时,当时,故有,而,故有。又当x0时,故对于任何,有。令,故所以函数是减函数。三、判断函数的周期性例4. 函数,对任何实数a、b恒有,且存在常数,使,求证:为周期函数。证明:令,则即又所以函数是周期函数,最小正周期为2c。四、求函数的解析式例5. 设x0,函数满足,求函数的解析式。解:由题意知用x换代入上式得:则×2得:所以五、求函数的值域例6. 函数为增函数,且满足,求函数的值域。解:令,则有。当时,不妨令,则有故当。当时,有有故当时,有所以当时函数的值域为R。练一练若对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年软考信息服务试题及答案
- 2025年预防出生缺陷知识竞赛试题(附答案)
- 家务保姆考试题及答案
- 司炉工考试题带答案
- 门窗安装工程施工方案(全面)
- 2025年食品安全法知识考试题库及参考答案
- 供电营业规则测试题含答案
- 内容营销策略及效果评估方法
- 项目经理PMP项目计划与进度控制指南
- 核保员绩效考核指标体系构建
- 抱膝顶摔控制技术课件
- 消防中控室服务合同范本
- 《HJ 212-2025 污染物自动监测监控系统数据传输技术要求》
- 【公开课】内能+2025-2026学年人教版物理九年级全一册+
- 托管安全教育体系构建与实施
- 活动舞台搭建方案
- 增强CT护理注意事项
- 超高频超声波治疗的研究进展
- 宝山区2024-2025学年六年级上学期期中考试数学试卷及答案(上海新教材)
- 外科院内感染管理制度
- 2025年中国苯乙烯类热塑性弹性体行业市场前景预测及投资价值评估报告
评论
0/150
提交评论