




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、最新高中数学课教案集 合教学目标:(1)使学生理解集合的含义,知道常用数集的概念及其记法;(2)使学生初步了解“属于”关系和集合相等的意义;初步了解有限集、无限集、空集的意义; (3)使学生初步掌握集合的表示方法,并能正确地表示一些简单的集合。教学重点:集合的含义及表示方法。教学过程:一、问题情境1情境:介绍你自己(P .5);2问题:像“家庭”、“学校”、“班级”、“男生”、“女生”等概念有什么共同的特征?二、学生活动1介绍自己:仿照所给例子,让学生做自我介绍(初步体会集合中元素与集合的关系);2列举生活中的集合实例(了解集合中元素的确定性);3分析、概括各种集合实例的共同特征。三、建构数学
2、1引导学生自己总结给出集合的含义(描述性概念);2介绍集合的表示方法;3常用数集的记法(N、N*、Z、Q、R以及符号、);4有关集合知识的历史简介。四、数学运用1例题例1 (1)求方程x2-2x-3=0的解集;(2)求不等式的解集例2 求方程x2 + 1 = 0所有实数解所构成的集合2练习(1)有限集、无限集、空集,请学生各举一例(2)第7页练习3,用“”或“”填空(口答)(3)用列举法表示下列集合: x |x是15的约数,xN; (x,y)|x1,2,y1,2; (x , y)| x + y = 2且x - 2y = 4; ; 。(4) 用描述法表示下列集合(1)1,4,7,10,13 ;(
3、2)-2,-4,-6,-8,-10 五、回顾小结:本节课学习了以下内容:1 集合的有关概念集合、元素、属于、不属于、有限集、无限集、空集;2 集合的表示方法列举法、描述法以及Venn图;3常用数集的定义及记法。六、课外作业P 7练习 第2题、第4题、第5题。函数的单调性 教学目的:理解函数单调性概念,掌握判断函数单调性的方法,会证明一些简单函数在某个区间上的单调性。 教学重点:函数单调性的概念与判断 教学过程: 一、问题情境1情境:第2.1.1开头的第三个问题中,=f(t)2问题:说出气温在哪些时间段内是升高的?怎样用数学语言刻画“随着时间的增大气温逐步升高”这一特征? 二、学生活动 问题1:
4、观察下列函数的图象(如图1),指出图象变化的趋势(2)yxOy(x-1)2-1,xR-112yxOy,x(0,+)1 (3)1 (1)yxOy2x1,xR (4)yxOyf(x),x0,241 2 4 6 8 10 12 14 16 18 20 22 24 2468102图1观察得到:随着x值的增大,函数的函数图象有的呈逐渐上升的趋势,有的呈逐渐下降的趋势,有的在一个区间内呈上升的趋势,在另一区间内呈逐渐下降的趋势问题2:你能明确说出“图象呈逐渐上升趋势”的意思吗?讨论得到:在某一区间内,当x的值增大时,函数值y也增大图象在该区间内呈上升趋势;当x的值增大时,函数值y反而减小图象在该区间内呈下
5、降趋势。函数的这种性质称为函数的单调性。三、建构数学问题3:如何用数学语言来准确地表述函数的单调性呢?例如,怎样表述在区间(0,+)上当x的值增大时,函数y的值也增大?能不能说,由于x1时,y3;x2时,y5就说随着x的增大,函数值y也随着增大?能不能说,由于x1,2,3,4,5,时,相应地y3,5,7,9,就说随着x的增大,函数值y也随着增大?答案是否定的。例如函数y(x-1)2-1(xR),当x1,2,3,4,5,时,相应地y1,0,3,8,15,就不能说随着x的增大,函数值y也随着增大这是因为x1时,y3,就自变量的值而言,11,而相应的函数值却有31,即y不是随着x的增大而增大通过讨论
6、,结合图(2)给出f(x)在区间I上是单调增函数的定义。o 1yxyx3图2从图1中可以看出:函数y2x1(xR)的单调增区间是(-,+);函数y(x1)2-1(xR)的单调增区间是1,+;气温曲线所表示的函数的单调增区间是4,14。问题4:如何定义单调减函数?(结合图(3)叙述)(学生讨论回答)从图1中可以看出:函数y(x1)2-1(xR)的单调减区间是(-,1;气温曲线所表示的函数的单调减区间是0,4,14,24。如果函数y=f(x)在某个区间上是增函数或减函数,那么就说函数y=f(x)在这个区间上具有单调性,这个区间就叫做函数y=f(x)的单调区间。图3yxyf(x) f(x1)f(x2
7、)图2yyf(x)f(x1)f(x2)x如函数y=2x+1(xR)的单调区间是(-,+),函数y(x1)2-1(xR)的单调区间是(-,1和1,+,气温曲线所表示的函数的单调区间是0,4,4,14,14,24。四、数学运用1例题例1 作出下列函数的图象,并写出函数的单调区间(1)yx 22; (2)y(x0)解 (1)函数yx22的图像如图4(1)所示,单调减区间为(-,0,单调减区间为0,+(2)yxOy = (x0)-11图4(1)yxOy=x2 + 1112(2)函数y(x0)的图像如图4(2)所示,(,0)和(0,)是两个单调减区间提问:能不能说,函数y(x0)在定义域(,0)(0,)
8、上是单调减函数?引导讨论,从图象上观察或取特殊值代入验证否定结论。(如取x1=-1,x2=)图5o 1xyy(x1)2yo1x1y=|x1|1例2 观察下列函数的图象(如图5),并指出它们是否为定义域上的增函数:学生总结:函数y(x1)2与y|x1|1的图象在x1时随着x值的增大而上升,在x1时随着x的值的增大而下降所以,这两个函数在定义域上不是增函数例3 证明函数f(x)1在区间(,0)上是增函数证明 设 x1x20,则x1x20且x1x20因为 f(x1)f(x2)(1)(1)0,即f(x1)f(x2),所以,函数f(x)1在区间(,0)上是增函数2练习课后练习第1、第2、第5题。五、回顾
9、小结本节课主要学习了函数单调性的概念以及判断函数在某个区间上的单调性的方法六、课外作业习题23:第1题、第2题、第4题、第8题。平面的基本性质教学目标:(1)初步理解平面的概念;(2)了解平面的基本性质(公理13);(3)能正确使用集合符号表示有关点、线、面的位置关系;(4)能应用平面的基本性质解决一些简单的问题。教学重点:平面的基本性质。教学难点:平面的无限延展性;正确使用图形语言、符号语言表示平面的基本性质。教学过程:一、问题情境1情境1:平静的水面、广阔的平原、平坦的足球场地、平滑的桌面、黑板的表面等。 情境2:棱柱的表面、圆柱和圆台的底面。图12问题1:这些事物给我们一种怎样的形象?
10、二、学生活动观察上述事物,结合棱柱、圆柱等几何体和已知的点、直线的概念,归纳、抽象出平面的基本特征:平坦的,没有厚薄,是无限延展的。三、建构数学 1平面概念问题2:可以用怎样的数学语言描述上述事物?(1)平面的概念:我们将上述事物用平面表示,和点、直线一样,平面也是从现实世界中抽象出来的几何概念,它没有厚薄,是无限延展的。情境3:电脑演示课件(如图2)。图2l平移 问题3:我们可以通过怎样的方式形成平面?通过观察,发现:平面可以看成是一条直线沿着某一方向平移得到的。问题4:直线可以看成是以点作为元素的集合,平面是否可视为点构成的集合?可以用怎样的数学符号表示点、直线与平面之间的关系?为此,我们
11、先确定平面的表示方法:2平面的表示(1)图形语言 BADC图3通常用平行四边形来表示平面。有时也可用三角形等其它图形表示平面。(注意从不同的角度画出平面)(2)符号语言平面通常用希腊字母、来表示,也可以用表示平行四边形的对角顶点的字母来表示,如图3,平面、平面AC等. 至此,我们就可以解决问题4了:怎样用符号语言分别表示:点A在平面内、点A不在平面内、直线l在平面内、直线l不在平面内?3平面的基本性质情境4:木工为了检查桌面是否“平”,常将一把直尺靠放在桌面上,看直尺与桌面之间是否有空隙。问题5:如果直线上有两个点在一个平面内,这条直线与这个平面有怎样的位置关系?通过观察、分析,可以发现:公理
12、1 如果一条直线上的两个点在一个平面内,那么这条直线上所有的点都在这个平面内。可见,所谓平面的“平”,可以认为:如果一条直线在平面内,那么这条直线上不会有跳出平面的点。公理1可用符号表示为: 直线AB. 情境5:(1)把一本书的一角放在桌面上,观察这本书所在的平面与桌面所在平面有几个公共点。(2)把教室门及其所在的墙面看成两个平面,当门不关闭时,它们的公共点分布情况如何?问题6:两个平面可能只有一个公共点吗?两个平面如果有公共点,有多少个公共点?这些公共点有怎样的关系?学生归纳,得出平面的基本性质2:公理2 如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一
13、条直线。可见,之所以说平面是“无限延展的”,是因为两个平面只要有公共点,它们就是相交的位置关系,公共部分就是一条直线。公理2用符号表示为 且情境6:(1)两个合页与一把锁就可以把门固定。(2)照相机的支架只需三条腿。问题7:如何用数学语言描述上述事实?学生归纳,得出平面的基本性质3。公理3:过不在一直线上的三点有且只有一个平面。公理3说明:三个不共线的点可以把一个平面确定下来。强调“不在同一直线上”与“三点”的作用.四、数学运用1、例题BCDAA1B1C1D1O1O例1如图,在长方体中,下列命题是否正确,并说明理由。(1)在平面内;(2)若分别为面、的中心,则平面与平面的交线为;(3)由点可以
14、确定一个平面;(4)设直线平面,直线平面,若与相交,则交点一定在直线上;(5)由确定的平面与由确定的平面是同一个平面。解:(1)错误;(2)正确; (3) 错误;(4) 正确;(5)正确.2、练习练习(P23)1、2、3、4、5五、回顾小结本节课学习了平面的画法及其表示;平面的基本性质(三个公理)及其简单应用. 六、课外作业习题3.2 第3、4、11题.直线的点斜式方程教学目标1知道由一个点和斜率可以确定直线,探索并掌握直线的点斜式方程和斜截式方程,能根据条件熟练地求出直线的方程。2使学生进一步理解直线和直线方程之间的关系,渗透解析几何的基本思想。3使学生进一步体会化归,辨证的思想方法。逐步培
15、养他们分析问题,解决问题的能力。教学重点直线的点斜式方程。教学过程一、 问题情境1情境1:过定点P(x0,y0)的直线有多少条?倾斜角为定值的直线有多少条?2问题1:确定一条直线需要几个独立的条件?二、学生活动学生思考、讨论。学生可能的回答:(1)两个点P1(x1,y1),P2(x2,y2); (2)一个点和直线的斜率(可能有学生回答倾斜角); (3)斜率和直线在y轴上的截距(说明斜率存在); (4)直线在x轴和y轴上的截距(学生没有学过直线在x轴上的截距,可类比,同时强调截距均不能为0)。三、建构数学问题2:给出两个独立的条件,例如:一个点P1(2,4)和斜率k=2就能决定一条直线l。(1)
16、你能在直线l上再找一点,并写出它的坐标吗?你是如何找的?(2)这条直线上的任意一点P(x,y)的坐标x,y满足什么特征呢?直线上的任意一点P(x,y)(除P1点外)和P1(x1,y1)的连线的斜率是一个不变量,即为k,即:, 即y - y1= k (x - x1)学生在讨论的过程中:(1) 强调P(x,y)的任意性。(2) 不直接提出直线方程的概念,而用一种通俗的,学生易于理解的语言先求出方程,可能学生更容易接受,也更愿意参与。问题3:(1)P1(x1,y1)的坐标满足方程吗? (2)直线上任意一点的坐标与此方程有什么关系? 教师指出,直线上任意一点的坐标都是这个方程的解;反过来,以这个方程的
17、解为坐标的点都在此直线上。让学生感受直线的方程和方程的直线的意义。如此,我们得到了关于x,y的一个二元一次方程。这个方程由直线上一点和直线的斜率确定,今后称其为直线的点斜式方程。四数学运用1例题例1一条直线经过点P1(-2,3),斜率为2,求这条直线的方程。解:由直线的点斜式方程得y-3=2(x+2),即2x-y+7=0.变1:在例1中,若将“斜率为2”改为“倾斜角为45o”,求这条直线的方程;变2:在例1中,若将直线的倾斜角改为90o,这条直线的方程是什么?例2已知直线l的斜率为k,与y轴的交点是P(0,b),求直线l的方程。解:根据直线的点斜式方程,得直线l的方程为y-b=k(x-0),即
18、y=kx+b. 介绍截距和斜截式方程的概念。2思考情境2:P76,用计算机在同一直角坐标系中分别作出直线y=2,y=x+2,y= -x+2,y=3x+2,y= -3x+2的图象。问题4:直线y=kx+2有什么特点?学生观察、归纳、发现:直线y=kx+2过定点(0,2),随着k的变化,直线绕点(0,2)作旋转运动。用几何画板演示。情境3:用计算机在同一直角坐标系中分别作出直线y=2 x,y=2x+1,y=2x-2,y=2x+4,y=-2x-4的图象.问题5:直线y=2x+b有什么特点?学生观察、归纳、发现:直线y=2x+b的方向不变,随着b的变化,直线作平行移动。用几何画板演示。3练习练习(P7
19、7)第1题、第2题、第3题、第4题。五、回顾小结本节课学习了直线的点斜式方程和直线方程的概念。六课外作业习题 4.1第1题、第2题。等比数列教学设计(共2课时)一、 教材分析: 1、内容简析: 本节主要内容是等比数列的概念及通项公式,它是继等差数列后有一个特殊数列,是研究数列的重要载体,与实际生活有密切的联系,如细胞分裂、银行贷款问题等都要用等比数列的知识来解决,在研究过程中体现了由特殊到一般的数学思想、函数思想和方程思想,在高考中占有重要地位。2、教学目标确定: 从知识结构来看,本节核心内容是等比数列的概念及通项公式,可从等比数列的“等比”的特点入手,结合具体的例子来学习等比数列的概念,同时
20、,还要注意“比”的特性。在学习等比数列的定义的基础上,导出等比数列的通项公式以及一些常用的性质。从而可以确定如下教学目标(三维目标):第一课时:(1)理解等比数列的概念 ,掌握等比数列的通项公式及公式的推导(2)在教学过程中渗透方程、函数、特殊到一般等数学思想,提高学生观察、归纳、猜想、证明等逻辑思维能力(3)通过对等比数列通项公式的推导,培养学生发现意识、创新意识第二课时: (1)加深对等比数列概念理解,灵活运用等比数列的定义及通项公式,了解等比中项概念,掌握等比数列的性质 (2)运用等比数列的定义及通项公式解决问题,增强学生的应用 3、教学重点与难点: 第一课时: 重点:等比数列的定义及通
21、项公式 难点:应用等比数列的定义及通项公式,解决相关简单问题 第二课时: 重点:等比中项的理解与运用,及等比数列定义及通项公式的应用 难点:灵活应用等比数列的定义及通项公式、性质解决相关问题二、 学情分析: 从整个中学数学教材体系安排分析,前面已安排了函数知识的学习,以及等差数列的有关知识的学习,但是对于国际象棋故事中的问题,学生还是不能解决,存在疑问。本课正是由此入手来引发学生的认知冲突,产生求知的欲望。而矛盾解决的关键依然依赖于学生原有的认知结构在研究等差数列中用到的思想方法,于是从几个特殊的对应观察、分析、归纳、概括得出等比数列的定义及通项公式。数列部分是高中教学的重点和难点,它对学生的
22、数学思想和方法的认识要求比较高,所有准确把握学生的思维能力。同时,这部分内容的学时又是学生形成良好的思维能力的关键。因此,本节教学设计一方面遵循从特殊到一般的认知规律,另一方面也加强观察、分析、归纳、概括能力培养。多数学生愿意积极参与,积极思考,表现自我。所以教师可以把尽可能多的时间、空间让给学生,让学生在参与的过程中,学习的自信心和学习热情等个性心理品质得到很好的培养。这也体现了教学工作中学生的主体作用。三、 教法选择与学法指导: 由于等比数列与等差数列仅一字之差,在知识内容上是平行的,可用比较法来学习等比数列的相关知识。在深刻理解等差数列与等比数列的区别与联系的基础上,牢固掌握数列的相关知
23、识。因此,在教法和学法上可做如下考虑:1、教法:采用问题启发与比较探究式相结合的教学方法 教法构思如下:提出问题引发认知冲突观察分析归纳概括得出结论总结提高。在教师的精心组织下,对学生各种能力进行培养,并以促进学生发展,又以学生的发展带动其学习。同时,它也能促进学生学会如何学习,因而特别有利于培养学生的探索能力。2、学法指导:学生学习的目的在于学会学习、思考,达到创新的目的,掌握科学有效的学习方法,可增强学生的学习信心,培养其学习兴趣,提高学习效率,从而激发强烈的学习积极性。我考虑从以下几方面来进行学法指导:(1) 把隐含在教材中的思想方法显化。如等比数列通项公式的推导体现了从特殊到一般的方法
24、。其通项公式是以n为字变量的函数,可利用函数思想来解决数列有关问题。思想方法的显化对提高学生数学修养有帮助。(2) 注重从科学方法论的高度指导学生的学习。通过提问、分析、解答、总结,培养学生发现问题、分析问题、解决问题的能力。训练逻辑思维的严密性和深刻性的目的。四、 教学过程设计:第一课时 1、创设情境,提出问题 (阅读本章引言并打出幻灯片)情境1:本章引言内容提出问题:同学们,国王有能力满足发明者的要求吗?引导学生写出各个格子里的麦粒数依次为:1,2, , (1)于是发明者要求的麦粒总数是情境2:某人从银行贷款10000元人民币,年利率为r,若此人一年后还款,二年后还款,三年后还款,还款数额
25、依次满足什么规律?10000(1+r),10000,10000, (2)情境3:将长度为1米的木棒取其一半,将所得的一半再取其一半,再将所得的木棒继续取其一半,各次取得的木棒长度依次为多少? (3)问:你能算出第7次取一半后的长度是多少吗?观察、归纳、猜想得2、自主探究,找出规律: 学生对数列(1),(2),(3)分析讨论,发现共同特点:从第二项起,每一项与前一项的比都等于同一常数。也就是说这些数列从第二项起,每一项与前一项的比都具有“相等”的特点。于是得到等比数列的定义:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列。这个常数叫做等比数列的公比
26、,公比常用字母表示,即。如数列(1),(2),(3)都是等比数列,它们的公比依次是2,1+r,点评:等比数列与等差数列仅一字之差,对比知从第二项起,每一项与前一项之“差”为常数,则为等差数列,之“比”为常数,则为等比数列,此常数称为“公差”或“公比”。3、观察判断,分析总结:观察以下数列,判断它是否为等比数列,若是,找出公比,若不是,说出理由,然后回答下面问题:1,3,9,27,1,-2,4,-8,-1,-1,-1,-1,1,0,1,0,思考:公比能为0吗?为什么?首项能为0吗?公比是什么数列?数列递增吗?数列递减吗?等比数列的定义也恰好给出了等比数列的递推关系式: 这一递推式正是我们证明等比
27、数列的重要工具。 选题分析;因为等差数列公差可以取任意实数,所以学生对公比往往忘却它不能取0和能取1的特殊情况,以致于在不为具体数字(即为字母运算)时不会讨论以上两种情况,故给出问题以揭示学生对公比有防患意识,问题是让学生明白时等比数列的单调性不定,而时数列为摆动数列,要注意与等差数列的区别。备选题:已知则,成等比数列的从要条件是什么?4、观察猜想,求通项: 方法1:由定义知道归纳得:等比数列的通项公式为: (说明:推得结论的这一方法称为归纳法,不是公式的证明,要想对这一方式的结论给出严格的证明,需在学习数学归纳法后完成,现阶段我们只承认它是正确的就可以了)方法2:迭代法 根据等比数列的定义有
28、方法3:由递推关系式或定义写出:,通过观察发现 ,即: (此证明方法称为“累商法”,在以后的数列证明中有重要应用) 公式的特征及结构分析:(1) 公式中有四个基本量:,可“知三求一”,体现方程思想。(2) 的下标与的上标之和,恰是的下标,即的指数比项数少1。5、问题探究:通项公式的应用例、已知数列是等比数列,求的值。备选题:已知数列满足条件:,且。求的值6、课堂演练:教材138页1、2题 备选题1:已知数列为等比数列,求的值 备选题2:公差不为0的等差数列中,依次成等比数列,则公比等于 7、归纳总结: (1)等比数列的定义,即 (2)等比数列的通项公式及推导过程。8、课后作业: 必作:教材13
29、8页练习4;习题1(2)(4)2、3、4、5 选作:1、已知数列为等比数列,且,求 2、已知数列满足 (1)求证:是等比数列;。 (2)求的通项。指数函数的图像与性质提出问题:新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(教师指导和同学的帮助)协作,主动建构而获得的。它强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。通过多年教学实践和对新课程的认识,我认为若遵循这个原则进行数学课堂教学,学生的学习将是一种高效的活动。教材中的地位: 本节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第
30、一种具体函数。是在初中已经初步探讨了正比例函数,反比例函数,一次函数,二次函数的图像和性质的基础上,在进一步学习了函数的概念及有关性质的前提下,去研究学习的。重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。这节课主要是学生利用描点法画出函数的图像,并描述出函数的图像特征,从而指出函数的性质。使学生从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。 设计背景: 在新教材的教学中,我慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性,实用性更明显的体现出来。学数学重在培养学生的
31、思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,它对于学生来说显得很抽象。所以如果再让让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。所以在教学中我尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识,是非常重要的。教学目标:一、知
32、识:理解指数函数的定义,能初步把握指数函数的图像,性质及其简单应用。 二、过程与方法:由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图像,(有条件的话借助计算机演示验证指数函数图像)由图像研究指数函数的性质。利用性质解决实际问题。 三、能力:1通过指数函数的图像和性质的研究,培养学生观察,分析和归纳的能力,进一步体会数形结合的思想方法。 2通过对指数函数的研究,使学生能把握函数研究的基本方法。 教学过程: 由实际问题引入: 问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,1个这样的细胞分裂x次后,得到的细胞的个数y与x之间的关系是什么? 分裂次数与细胞个数 1,2;2,2
33、2=22;3,222=23;x,222=2x归纳:y=2x问题2:某种放射性物质不断变化为其它物质,每经过1年剩留的这种物质是原来的84%,那么经过x年后剩留量y与x的关系是什么? 经过1年,剩留量y=184%=0.841;经过2年,剩留量y=0.840.84=0.842 经过x年,剩留量y=0.84x寻找异同: 你能从以上的两个例子中得到的关系式里找到什么异同点吗?共同点:变量x与y构成函数关系式,是指数的形式,自变量在指数位置,底数是常数;不同点:底数的取值不同。那么,今天我们来学习新的一个基本函数:指数函数 得到指数函数的定义:定义:形如y=ax(a0且a1)的函数叫做指数函数。 在以前
34、我们学过的函数中,一次函数用形如y=kx+b(k0)的形式表示,反比例函数用形如y=k/x(k0)表示,二次函数y=ax2+bx+c(a0)表示。对于其一般形式上的系数都有相应的限制。 问:为什么指数函数对底数有这样的要求呢? 若a=0,当x0时,恒等于0,没有研究价值;当x0时,无意义。 若a0且a1。由定义,我们可以对指数函数有一初步熟悉。 进一步理解函数的定义: 指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的定义域为R.研究函数的途径:由函数的图像的性质,从形与数两方面研
35、究。学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图像及性质,然后利用其图像性质去解决数学问题和实际问题。根据以往的经验,你会从那几个角度考虑?(图像的分布范围,图像的变化趋势,)图像的分布情况与函数的定义域,值域有关,函数的变化趋势体现函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。 首先我们做出指数函数的图像,我们研究一般性的事物,常用的方法是:由特殊到一般。 我们以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图像,将学生画的函数图像展示,(画函数的图像的步骤是:列表,描点,连线。)。 最后,老师在黑板(电脑)上演示
36、列表,描点,连线的过程,并且,画出取不同的值时,函数的图像。 要求学生描述出指数函数图像的特征,并试着描述出性质。 数学发展的历史表明,每一个重要的数学概念的形成和发展,其中都有丰富的经历,新课程较好的体现了这点。对新课程背景下的学生而言,数学的知识应该是一个数学化的过程,即通过对常识材料进行细致的观察、思考,借助于分析、比较、综合、抽象、概括等思维活动,对常识材料进行去粗取精、去伪存真的精加工。该案例正是从数学研究和数学实验的过程中进行设计。虽然学生的思维不一定真实的重演了人类对数学知识探索的全过程,但确确实实通过实验、观察、比较、分析、归纳、抽象、概括等思维活动,在探索中将数学数学化,从而
37、才使学生对数学学习产生了乐趣,对数学的研究方法有了一定的了解。 虽然学生要学的数学是历史上前人已建构好了的,但对他们而言,仍是全新的、未知的,需要用他们自己的学习活动来再现类似的过程。该案例正是从创设问题情景作为教学设计的重要的内容之一。教师应该把教学设计成学生动手操作、观察猜想、揭示规律等一系列过程,侧重于学生的探索、分析与思考,侧重于过程的探究及在此过程中所形成的一般数学能力。 教师的地位应由主导者转变为引导者,使教学活动真正成为学生的活动。在教学过程中,把学习的主动权交给学生,在时间和空间上保证学生在教师的指导下,学生能自己独立自主的探究学习。使教学活动始终处于学生的“最近发展区”,使每
38、一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。 总之,通过案例研究,不断研究新教材、新理念,不断调整教学策略优化课堂教学,培养学生探究学习与创新学习能力将是我们在数学教学中要继续探究的课题。直线与平面平行的判定一、教学内容分析: 本节教材选自人教A版数学必修第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判
39、定的学习作用重大。二、学生学习情况分析:任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。三、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。四、教学目标通过直观感知观察操作确认的
40、认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。五、教学重点与难点重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。六、教学过程设计(一)知识准备、新课引入提问1:根据公共点的情况,空间中直线a和平面有哪几种位置关系?并完成下表:(多媒体幻灯片演示)位置关系公共点符号表示图形表示我们把直线与平面相
41、交或平行的位置关系统称为直线在平面外,用符号表示为a提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。(二)判定定理的探求过程1、直观感知提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?生1:例举日光灯与天花板,树立的电线杆与墙面。生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。学情预设:此处的预设与生成应当是很
42、自然的,但老师要预见到可能出现的情况如电线杆与墙面可能共面的情形及门要离开门框的位置等情形。2、动手实践教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因
43、素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。3、探究思考(1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:平面外一条线 平面内一条直线 这两条直线平行(2)如果平面外的直线a与平面内的一条直线b平行,那么直线a与平面平行吗?4、归纳确认:(多媒体幻灯片演示)直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。简单概括:(内外)线线平行线面平行符号表示:温馨提示:作用:判定或证明线面平行。关键:在平面内找(或作)出一条直线与面外
44、的直线平行。思想:空间问题转化为平面问题(三)定理运用,问题探究(多媒体幻灯片演示)1、想一想:(1)判断下列命题的真假?说明理由:如果一条直线不在平面内,则这条直线就与平面平行( )过直线外一点可以作无数个平面与这条直线平行( )一直线上有二个点到平面的距离相等,则这条直线与平面平行( )(2)若直线a与平面内无数条直线平行,则a与的位置关系是( )A、a |B、a C、a |或aD、学情预设:设计这组问题目的是强调定理中三个条件的重要性,同时预设(1)中的学生可能认为正确的,这样就无法达到老师的预设与生成的目的,这时教师要引导学生思考,让学生想象的空间更广阔些。此外教师可用预先准备好的羊毛
45、针与泡沫板进行演示,让羊毛针穿过泡沫板以举不平行的反例,如果有的学生空间想象力强,能按老师的要求生成正确的结果则就由个别学生进行演示。2、作一作:设a、b是二异面直线,则过a、b外一点p且与a、b都平行的平面存在吗?若存在请画出平面,不存在说明理由?先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。设计意图:这是一道动手操作的问题,不仅是为了拓展加深对定理的认识,更重要的是培养学生空间感与思维的严谨性。3、证一证:例1(见课本60页例1):已知空间四边形ABCD中,E、F分别是AB、AD的中点,求证:EF | 平面B
46、CD。变式一:空间四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA中点,连结EF、FG、GH、HE、AC、BD请分别找出图中满足线面平行位置关系的所有情况。(共6组线面平行)变式二:在变式一的图中如作PQEF,使P点在线段AE上、Q点在线段FC上,连结PH、QG,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形EFGH、PQGH分别是怎样的四边形,说明理由。设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。例2:如图,在正方体ABCDA1B1C1D1中,E、F分别是棱B
47、C与C1D1中点,求证:EF | 平面BDD1B1 分析:根据判定定理必须在平面BDD1B1内找(作)一条线与EF平行,联想到中点问题找中点解决的方法,可以取BD或B1D1中点而证之。思路一:取BD中点G连D1G、EG,可证D1GEF为平行四边形。思路二:取D1B1中点H连HB、HF,可证HFEB为平行四边形。知识链接:根据空间问题平面化的思想,因此把找空间平行直线问题转化为找平行四边形或三角形中位线问题,这样就自然想到了找中点。平行问题找中点解决是个好途径好方法。这种思想方法是解决立几论证平行问题,培养逻辑思维能力的重要思想方法4、练一练:练习1:见课本6页练习1、2练习2:将两个全等的正方
48、形ABCD和ABEF拼在一起,设M、N分别为AC、BF中点,求证:MN | 平面BCE。变式:若将练习2中M、N改为AC、BF分点且AM = FN,试问结论仍成立吗?试证之。设计意图:设计这组练习,目的是为了巩固与深化定理的运用,特别是通过练习2及其变式的训练,让学生能在复杂的图形中去识图,去寻找分析问题、解决问题的途径与方法,以达到逐步培养空间感与逻辑思维能力。(四)总结先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示):1、线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与这个平面平行。2、定理的符号表示:简述:(内外)线线平行则线面平行3、定理运用的关键是找(作
49、)面内的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等。七、教学反思本节“直线与平面平行的判定”是学生学习空间位置关系的判定与性质的第一节课,也是学生开始学习立几演泽推理论述的思维方式方法,因此本节课学习对发展学生的空间观念和逻辑思维能力是非常重要的。本节课的设计遵循“直观感知操作确认思辩论证”的认识过程,注重引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。本节课的设计注重训练学生准确表达数学符号语言、文字
50、语言及图形语言,加强各种语言的互译。比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。本节课对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包涵的数学现象与数学原理,体验数学即生活的道理,比如让学生举生活中能感知线面平行的例子,学生会举出日光灯与天花板,电线杆与墙面,转动的门等等,同时老师的举例也很贴进生活,如老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行。然后引导学生从中抽象概括出定理。本节课对定理的运用设
51、计了想一想、作一作、证一证、练一练等环节,能从易到难,由浅入深地强化对定理的认识,特别是对“证一证”中采用一题多解,一题多变的变式教学,有利于培养学生思维的广阔性与深刻性。本节课的设计还注重了多媒体辅助教学的有效作用,在复习引入,定理的探求以及定理的运用等过程中,都有效地使用了多媒体。福建省宁德第一中学 叶洪康点评本节课教师利用教室现有实物,如日光灯管、地面、教师个人、门等做教具,让学生认识和理解直线和平面平行的理由和条件。学生在应用观察、猜想等手段探索研究判定定理时,能获得视觉上的愉悦,增强探求的好奇心。学生经过思维活动,从中找出一类事物的本质属性,最后通过概括得出新的数学概念。创设的问题情
52、景有效,能遵循认识规律,从感性到理性,从具体到抽象。本节课的设计符合新课程立几中“直观感知操作确认思辩论证”的教学理念。整体设计中规中矩,自然流畅。教师对问题、例题的设计都别具匠心,考虑到学生的实际,有意地设计了一些铺垫和引导,既巩固已有知识,又为新知识提供了附着点,充分体现学生的主体地位。本节课蕴涵着化归思想,设计中注重对学生进行思想方法的训练,通过一题多解、一题多变,渗透了联系与转化的思想,使学生学会思考、掌握方法,有利于培养学生思维的广阔性与深刻性。11、循环结构一、教学内容分析循环结构是人民教育出版社课程教材研究所编著的普通高中课程标准试验教科书数学3(必修)(A版)中1。1。2的第二课时的内容。(1)算法是高中数学课程中的新内容,算法的思想是非常重要的,算法思想已逐渐成为每个现代人所必须具备的数学素养。(2)本节课的内容是循环结构,它与顺序结构、条件分支结构是算法的三种基本逻辑结构,可以表示任何一个算法。并且循环结构是算法这一部分的重点和难点,它的重要性就是充分体现计算机的优势,也即能以极快的速度进行重复计算。二、学生学习情况分析学生已经
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西省婺源县2025届七下生物期末调研试题含解析
- 2025年江苏扬州市仪征市十二圩新区建设有限公司招聘笔试参考题库含答案解析
- 2025年广西崇左凭祥市祥信城市建设有限责任公司招聘笔试参考题库含答案解析
- 2025年湖南东江湖生态渔业发展有限公司招聘笔试参考题库附带答案详解
- 2025年福建仙游县水务投资集团有限公司招聘笔试参考题库附带答案详解
- 2025年安徽芜湖无为市水务投资有限公司招聘笔试参考题库附带答案详解
- 提高舆论引导能力
- 浙江小学五年级上册奥数单选题100道及答案
- 河南省开封市部分学校2022-2023学年高一下学期第二次月考语文无答案
- 小学生心理健康家庭教育讲座
- 新能源系统 课件 第10章 多能互补、可持续能源系统
- 井下动火安全技术措施
- 理解词语句子的方法PPT
- 热线心理咨询技术-课件
- 碰撞与冲击动力学
- 全等三角形第一课时课件
- 歌曲《我们》歌词
- 颈部肿块诊断及鉴别诊断课件
- 汽车前保险杠结构及安全能分析学士学位参考
- 配电室八项制度(八张)
- 清算方案模板9篇
评论
0/150
提交评论