




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高等数学上册复习要点函数与极限函数1 、函数定义及性质(有界性、单调性、奇偶性、周期性);2 、反函数、复合函数、函数的运算;3 、初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数;4 、函数的连续性与间断点;f (x) 在 x0连续lim f (x)f (x0)x x0第一类:左右极限均存在.可去间断点、跳跃间断点第二类:左右极限、至少有一个不存在无穷间断点、振荡间断点5 、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论.极限1 、定义2 )数列极限lim xna0, N , n N , xnan3 ) 函数极限lim f (x) A 0,0, x,
2、 当 0 x x0时, f (x) Ax x0左极限:f(x0 ) lim f (x)x x0右极限:f (x0 ) lim f (x)x x0lim f (x) A 存在x x0f (x0 ) f (x0 )2 、 极限存在准则1 ) 夹逼准则:1 )ynxnzn ( nn0 )2 )lim ynlim znalim xnannn2 )单调有界准则:单调有界数列必有极限.3 、无穷小(大)量1 ) 定义:若lim 0则称为无穷小量;若lim 则称为无穷大量.2 ) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小Th1 o( ) ;Th2 , lim 存在,则lim lim4、
3、求极限的方法1 ) 单调有界准则;2 )夹逼准则;3 )极限运算准则及函数连续性;4) 两个重要极限:a)sinx limx0 xb)1lim (1 x) x x0lim (1 1)x e xx5 ) 无穷小代换:( x 0 )a) x sin x tanx arcsinx arctanxb) 112 cosx x2c) ex1 xd) ln(1 x) xe) (1 x) 1 x导数定义: f (x0)lim f (x)x x0x1xlna)loga(1x) x lnaf (x0 ) x0f (x)f (x0)左导数:右导数:f(x0 )lim0x x0xx0f (x)f (x0 )f(x0
4、)lim0x x0x x0函数 f (x)在 x0点可导f (x0) f (x0)2 、几何意义:f (x0 ) 为曲线y f (x) 在点x0 , f (x0 ) 处的切线的斜率.3 、可导与连续的关系:4 、求导的方法1 )导数定义;2 )基本公式;3 )四则运算;4 )复合函数求导(链式法则);5 )隐函数求导数;6 )参数方程求导;7 )对数求导法.5 、 高阶导数d 2yddy1 ) 定义: dx2dx dxn(n) Ck (k) (n k)2 )Leibniz 公式: uvCn u vk0微分1 ) 定义: y f (x0x) f (x0 ) A x o( x) ,其中 A与 x无
5、关 .2 ) 可微与可导的关系:可微可导,且dy f (x0 ) x f (x0)dx三、 微分中值定理与导数的应用(一) 中 值定理1 、 Rolle 罗尔定理:若函数f (x) 满足:1) f(x) Ca,b;2) f(x) D(a,b);3) f(a) f(b);则 (a,b),使 f ( ) 0.2 、 Lagrange 拉格朗日中值定理 :若函数f(x) 满足:1) f(x) Ca,b;2) f(x) D(a,b);则 (a,b),使 f(b) f(a) f ( )(b a).3 、 Cauchy 柯西 中值定理:若函数f (x), F(x) 满足:1) f(x),F(x) Ca,b
6、; 2) f(x),F(x) D(a,b);3) F (x) 0,x (a,b)(a,b),使f(b)F(b)f (a)F(a)f()F()洛 必达法则Taylor 公式单 调性及极值1 、 单调性判别法:f (x) Ca,b , f (x) D(a,b),则若 f (x) 0,则f (x) 单调增加;则若f (x) 0 ,则 f (x) 单调减少 .2 、极值及其判定定理:a) 必要条件:f (x) 在 x0可导,若x0为 f (x) 的极值点,则f (x0) 0.b) 第一充分条件:f (x) 在 x0的邻域内可导,且 f (x0) 0, 则若当x x0时, f (x) 0, 当 x x0
7、时,f (x) 0, 则 x0为极大值点;若当 x x0时, f (x) 0,当 x x0时,f (x) 0,则x0为极小值点;若在x0的两侧 f (x) 不变号,则x0不是极值点.c) 第二充分条件:f (x) 在 x0处二阶可导,且f (x0) 0, f (x0) 0,则若 f (x0) 0,则x0为极大值点;若f (x0) 0,则x0为极小值点.3 、凹凸性及其判断,拐点x1 x2f (x1 ) f (x2 )1 ) f(x)在区间 I 上连续, 若x1,x2 I, f( 1 2 2)1 22 , 则称 f(x)在x1 x2f (x1) f (x2)区间 I 上的图形是凹的;若x1,x2
8、 I , f( 1 2 2)1 22 , 则称 f(x) 在区间 I 上的图形是凸的.2)判定定理:f (x) 在 a,b 上连续,在(a, b)上有一阶、二阶导数,则a) 若x(a,b), f (x)0,则f(x)在a,b上的图形是凹的;b) 若x(a,b), f (x)0,则f(x)在a,b上的图形是凸的.3)拐点:设y f (x) 在区间 I 上连续,x0是 f (x) 的内点,如果曲线y f (x)经过点(x0, f (x0) 时,曲线的凹凸性改变了,则称点(x0, f(x0)为曲线的拐点.不 等式证明1 、利用微分中值定理;2 、利用函数单调性;3 、利用极值(最值).方 程根的讨论
9、1 、连续函数的介值定理;2 、Rolle 定理;3 、函数的单调性;4 、极值、最值;5 、凹凸性 .渐 近线1 、铅直渐近线:lim f (x) ,则xa为一条铅直渐近线;xa2 、水平渐近线:lim f (x)b ,则yb为一条水平渐近线;x不定积分概 念和性质1、 、 原函数:在区间I 上,若函数F (x)可导,且F (x) f (x) ,则 F(x) 称为f (x) 的一个原函数.2、 不定积分:在区间 I 上, 函数 f (x) 的带有任意常数的原函数称为f (x) 在区间 I 上的不定积分.3、 基本积分表(P188 , 13 个公式) ;4、 性质(线性性).换 元积分法1 、
10、 第一类换元法(凑微分): f (x) (x)dx f (u)du u (x)2 、 第 二 类 换 元 法 ( 变 量 代 换 : 三 角 代 换 、 倒 代 换 、 根 式 代 换 等 ) :f (x)dx f (t) (t)dt 1 t (x)分 部积分法:udv uv vdu (反对幂指三,前U 后 V )有 理函数积分1 、 “拆”;2、变量代换(三角代换、倒代换、根式代换等).五、 定积分概 念与性质:1、定义:bf (x)dxalim0i1f ( i ) xi2、 性质: ( 7 条)性质 7 (积分中值定理)f(x) 在区间 a,b 上连续,则a,b,使f (x)dxf ( )(b a)f( )bf (x)dx aba微 积分基本公式(N L 公式)x1 、 变上限积分:设(x) a f (t)dt,则 (x) f (x)d (x)推广: d f (t)dt f (x) (x) f (x) (x)dx (x)b2、N L 公式: 若 F(x)为 f (x) 的一个原函数,则 a f (x)dx F(b) F (a)换 元法和分部积分b1 、 换元法:a f (x)dx f (t) (t)dtbbb2 、分部积分法:udv uv a vduaa反 常积分1 、 无穷积分:tf (x)dx lim f (x)dxatabbf (x)dx lim f (x)dx0f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论