弹性力学基础知识PPT学习教案_第1页
弹性力学基础知识PPT学习教案_第2页
弹性力学基础知识PPT学习教案_第3页
弹性力学基础知识PPT学习教案_第4页
弹性力学基础知识PPT学习教案_第5页
已阅读5页,还剩62页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、会计学1弹性力学基础知识弹性力学基础知识第一章 绪 论1.1 1.1 弹性力学及有限元的应用弹性力学及有限元的应用1.2 1.2 弹性力学定义及基本研究内容弹性力学定义及基本研究内容1.3 1.3 有限元方法的介绍有限元方法的介绍1.4 1.4 弹性力学与有限元之间的关系弹性力学与有限元之间的关系1.5 1.5 弹性力学及有限元的发展史弹性力学及有限元的发展史1.61.6课程的学习方法课程的学习方法第1页/共67页第二章 弹性力学基础知识2.1 弹性力学的基本假设弹性力学的基本假设2.2 弹性力学基本概念弹性力学基本概念2.3 弹性力学基本方程弹性力学基本方程2.4 边界条件边界条件2.5 圣

2、维南原理圣维南原理2.6 虚位移原理虚位移原理2.7 强度理论强度理论第2页/共67页2.1 弹性力学的基本假设工程问题的复杂性工程问题的复杂性是诸多方面因素组成的。如果不分主是诸多方面因素组成的。如果不分主次考虑所有因素,则问题的复杂,次考虑所有因素,则问题的复杂,数学推导的困难数学推导的困难,将,将使得问题无法求解。使得问题无法求解。根据问题性质,忽略部分暂时不必考虑的因素,提出一根据问题性质,忽略部分暂时不必考虑的因素,提出一些基本假设。使问题的研究限定在一个些基本假设。使问题的研究限定在一个可行的范围可行的范围。基本假设是学科的研究基础。基本假设是学科的研究基础。超出基本假设的研究领域

3、是固体力学其它学科的研究。超出基本假设的研究领域是固体力学其它学科的研究。基本假设的必要性第3页/共67页2.1 弹性力学的基本假设第4页/共67页2.1 弹性力学的基本假设1. 1. 连续性假设连续性假设 假设所研究的整个弹性体内部完全由组成物体的假设所研究的整个弹性体内部完全由组成物体的介质所充满,各个质点之间不存在任何空隙。介质所充满,各个质点之间不存在任何空隙。变形后仍然保持连续性。变形后仍然保持连续性。根据这一假设,物体所有物理量,例如位移、应变和根据这一假设,物体所有物理量,例如位移、应变和应力等均为物体空间的连续函数。应力等均为物体空间的连续函数。微观上这个假设不成立微观上这个假

4、设不成立宏观假设。宏观假设。第5页/共67页2.1 弹性力学的基本假设2.2. 均匀性假设均匀性假设 假设弹性物体是由同一类型的均匀材料组成的。假设弹性物体是由同一类型的均匀材料组成的。因此物体各个部分的物理性质都是相同的,不随坐标位因此物体各个部分的物理性质都是相同的,不随坐标位置的变化而改变。置的变化而改变。 物体的弹性性质处处都是相同的。物体的弹性性质处处都是相同的。工程材料,例如混凝土颗粒远远小于物体的的几何形工程材料,例如混凝土颗粒远远小于物体的的几何形状,并且在物体内部均匀分布,从宏观意义上讲,也可状,并且在物体内部均匀分布,从宏观意义上讲,也可以视为均匀材料。以视为均匀材料。对于

5、环氧树脂基碳纤维复合材料,不能处理为均匀材对于环氧树脂基碳纤维复合材料,不能处理为均匀材料料。第6页/共67页2.1 弹性力学的基本假设3. 3. 各向同性假设各向同性假设 假定物体在各个不同的方向上具有相同的物理假定物体在各个不同的方向上具有相同的物理性质,这就是说物体的弹性常数将不随坐标方向的改性质,这就是说物体的弹性常数将不随坐标方向的改变而变化。变而变化。 宏观假设,材料性能是显示各向同性。宏观假设,材料性能是显示各向同性。当然,像木材,竹子以及纤维增强材料等,属于各当然,像木材,竹子以及纤维增强材料等,属于各向异性材料。向异性材料。这些材料的研究属于复合材料力学研究的对象这些材料的研

6、究属于复合材料力学研究的对象。第7页/共67页2.1 弹性力学的基本假设4. 4. 完全弹性假设完全弹性假设 对应一定的温度,如果应力和应变之间存在一一对对应一定的温度,如果应力和应变之间存在一一对应关系,而且这个关系和时间无关,也和变形历史无关应关系,而且这个关系和时间无关,也和变形历史无关,称为完全弹性材料。,称为完全弹性材料。完全弹性分为线性和非线性弹性,弹性力学研究限于线完全弹性分为线性和非线性弹性,弹性力学研究限于线性的应力与应变关系。性的应力与应变关系。研究对象的材料弹性常数不随应力或应变的变化而改变研究对象的材料弹性常数不随应力或应变的变化而改变。第8页/共67页2.1 弹性力学

7、的基本假设5. 5. 小变形假设小变形假设 假设在外力或者其他外界因素(如温度等)的影响下假设在外力或者其他外界因素(如温度等)的影响下,物体的变形与物体自身几何尺寸相比属于高阶小量。,物体的变形与物体自身几何尺寸相比属于高阶小量。在弹性体的平衡等问题讨论时,可以不考虑因变形所在弹性体的平衡等问题讨论时,可以不考虑因变形所引起的尺寸变化。引起的尺寸变化。忽略位移、应变和应力等分量的高阶小量,使基本方忽略位移、应变和应力等分量的高阶小量,使基本方程成为线性的偏微分方程组。程成为线性的偏微分方程组。 第9页/共67页2.1 弹性力学的基本假设假设物体处于自然状态,即在外界因素作用之前,物体假设物体

8、处于自然状态,即在外界因素作用之前,物体内部没有应力。内部没有应力。弹性力学求解的应力仅仅是外部作用(外力或温度改变)产弹性力学求解的应力仅仅是外部作用(外力或温度改变)产生的。生的。6. 6. 无初始应力假设无初始应力假设 第10页/共67页弹性力学的基本假设,主要包括弹性体的连续性、均匀性、各向同性、完全弹性和小变形假设等。这些假设都是关于材料变形的宏观假设。弹性力学问题的讨论中,如果没有特别的提示,均采用基本假设。这些基本假设被广泛的实验和工程实践证实是可行的。2.1 弹性力学的基本假设第11页/共67页2.2 弹性力学基本概念一 外力第12页/共67页一般来讲,物体内部各点处的体力是不

9、相同的。物体内任一点的体力用Fb表示,称为体力矢量,其方向由该点的体力合力方向确定。体力沿三个坐标轴的分量用Fbi( i = 1,2,3)或者Fbx,Fby,Fbz表示,称为体力分量。体力分量的方向规定与坐标轴方向一致为正,反之为负。 应该注意的是:这里体力是指一点的体力。 2.2 弹性力学基本概念1.体力说明第13页/共67页2.2 弹性力学基本概念2.体力定义第14页/共67页面力矢量是单位面积上的作用力,面力是弹性体表面坐标的函数。一般条件下,面力边界条件是弹性力学问题求解的主要条件。面力矢量用Fs表示,其分量用Fsi(i=1,2,3)或者Fsx、Fsy和Fsz表示。面力的方向规定以与坐

10、标轴方向一致为正,反之为负。 这里的面力指的是一点的面力。2.2 弹性力学基本概念3.面力说明第15页/共67页2.2 弹性力学基本概念4.面力定义第16页/共67页2.2 弹性力学基本概念二 内力内力:内力:物体在外界因素作用下,例如外力,温度变化等,物体内部各个部分之间将产生相互作用,这种物体一部分与相邻部分之间的作用力。 内力的计算可以采用截面法,即利用假想平面将物体截为两部分,将希望计算内力的截面暴露出来,通过平衡关系计算截面内力F。 第17页/共67页2.2 弹性力学基本概念 物体承受外力作用,物体内部各截面之间产生附加内力,为了显示出这些内力,我们用一截面截开物体,并取出其中一部分

11、:三 应力的概念第18页/共67页2.2 弹性力学基本概念 其中一部分对另一部分的作用,表现为内力,它们是分布在截面上分布力的合力。取截面的一部分,它的面积为A,为物体在该截面上A点的应力。QA平均集度为Q/A,其极限作用于其上的内力为Q,AQS lim三 应力的概念第19页/共67页2.2 弹性力学基本概念通常将应力沿垂直于截面和平行于截面两个方向分解为S正应力切应力三 应力的概念第20页/共67页应力分量xyzo应力不仅和点的位置有关,和截面的方位也有关。描述应力,通常用一点平行于坐标平面的单元体,各面上的应力沿坐标轴的分量来表称为应力分量。物体内各点的内力平衡,因此相对平面上的应力分量大

12、小相等,方向相反。2.2 弹性力学基本概念三 应力的概念第21页/共67页2.2 弹性力学基本概念 平行于单元体面的应力称为切应力,用yx 、yz表示,其第一下标y表示所在的平面,第二下标x、y分别表示沿坐标轴的方向。如图示的yx、yz。yyxyzxyzo符号规定:符号规定:图示单元体面的法线为y,称为y面,应力分量垂直于单元体面的应力称为正应力。正应力记为 ,沿y轴的正向为正,其下标表示所沿坐标轴的方向。y三 应力的概念第22页/共67页 平行于单元体面的应力如图示的yx、yz,沿x轴、z轴的负向为正。图示单元体面的法线为y的负向,正应力记为 ,沿y轴负向为正。y符号规定2.2 弹性力学基本

13、概念三 应力的概念第23页/共67页弹性力学弹性力学材料力学材料力学注意弹性力学切应力符号和材料力学是有区别的,图示中,弹性力学里,切应力都为正,而材料力学中相邻两面的的符号是不同的。在画应力圆时,应按材料力学的符号规定。符号规定2.2 弹性力学基本概念三 应力的概念第24页/共67页其它x、z正面上的应力分量的表示如图所示。凡正面上的应力沿坐标正向为正,逆坐标正向为负。xxyxzyxyyzzxzyzxyyxyzzyxzzxxyzxyyzzx独立应力分量:2.2 弹性力学基本概念三 应力的概念第25页/共67页例3 已知单元体各面上的应力分量,试在单元上标出方向与数值。100408040506

14、08060120 xyxzxxyyzyxzyzzzoxy100804060504012060802.2 弹性力学基本概念三 应力的概念举例第26页/共67页ABC的法线方向的单位矢量可表示为 n = l i+ m j + n k设A为ABC的面积,则 OBC=lA, OCA=mA, OAB=nA微分四面体在应力矢量和体积力作用下应满足平衡条件,设h为O点至斜面ABC的高,由x方向的平衡,可得将公式代入上式,则 2.2 弹性力学基本概念四 一点的应力状态第27页/共67页对于微分四面体单元,h趋近于零,因此同理 如果采用张量记号,则上述公式可以表示为 2.2 弹性力学基本概念四 一点的应力状态第

15、28页/共67页平面ABC上的正应力和切应力222222 ()()()ppppxyznlmnlmnlmnxxyzxxyyyzzxzyz则平面ABC上的全应力为 22222 (122222 2() ()()()xxyzxxyyyzzxzyzpnnnlmnlmmnnlxyzxyyzzylmnlmnlmn222 222lpmpnpxyznlmnlmmnnlxyzxyyzzy2.2 弹性力学基本概念四 一点的应力状态第29页/共67页1)切应力为零的微分面称为主微分平面,简称主平面主平面。 2)主平面的法线称为应力主轴或者称为应力主方向应力主方向。3)主平面上的正应力称为主主应力应力。根据主应力和应力

16、主轴的定义,可以建立其求解方程。 2.2 弹性力学基本概念五 主平面、应力主方向与主应力第30页/共67页 根据主平面的定义,应力矢量 Pn的方向应与法线方向n一致,设 为主应力,则应力矢量的三个分量与主应力的关系为 px = l, py = m, pz = n 2.2 弹性力学基本概念五 主平面、应力主方向与主应力第31页/共67页px = l, py = m, pz = n 方程组有非零解的条件求解主应力2.2 弹性力学基本概念五 主平面、应力主方向与主应力第32页/共67页特征方程应力张量元素构成的行列式 主对角线元素之和 应力张量第一不变量 行列式按主对角线展开的三个代数主子式之和应力

17、张量第二不变量应力张量第三不变量2.2 弹性力学基本概念五 主平面、应力主方向与主应力第33页/共67页v解得的三个实数根即为三个主应力,将主应力代入方程组,可得三个主方向。v说明:v1、受外力处于平衡的结构内,任意点有三个主应力,且主平面相互垂直。v、主应力值和方向只取决于受力状态,与选取的坐标系无关。v、所有截面中,1232.2 弹性力学基本概念五 主平面、应力主方向与主应力第34页/共67页载荷或温度变化位移位移六 位移的概念2.2 弹性力学基本概念第35页/共67页外力作用下,物体各点发生位移,但是某点位移的大小并不能确定该处应力的大小,它与物体的整体约束有关。应变反映局部各点相对位置

18、的变化,与应力直接相关,变形体力学中弹性力学对这种关系作了最为简化的假设,在各向同性线弹性的条件下,弹性常数只有两个。七 应变的概念xyzxyyzzxyxzyxz1、线应变2、切应变2.2 弹性力学基本概念第36页/共67页2.3 弹性力学基本方程v平衡微分方程v几何方程v变形协调方程v物理方程第37页/共67页平衡物体整体平衡,内部任何部分也是平衡的。对于弹性体,必须讨论一点的平衡。一 平衡微分方程2.3 弹性力学基本方程第38页/共67页一 平衡微分方程第39页/共67页一 平衡微分方程2.3 弹性力学基本方程第40页/共67页0,bjiijF0yxxzxbxFxyz00 xyyzybyy

19、zzzbzFxyzFxyz一 平衡微分方程2.3 弹性力学基本方程第41页/共67页正应变示意图二 几何方程2.3 弹性力学基本方程第42页/共67页由几何方程可知,u,v,w函数已知,则该点应变分量确定。 但是,应变分量确定,无法求出位移分量。空间几何方程二 几何方程2.3 弹性力学基本方程第43页/共67页zxxzzyyzyxxyxzzxyzzyxyyx222222222222222三 变形协调方程2.3 弹性力学基本方程第44页/共67页yxzyxzzxyxzyzyxzyxzxyzxyzyzxyzxyxyzxyzx2222)(2)(2)(三 变形协调方程2.3 弹性力学基本方程第45页/

20、共67页xy)(E1 E x321zyxzyxxxxEE应变和应力关应变和应力关系系取一个单元体,在各正应力作用下,沿轴方向的取一个单元体,在各正应力作用下,沿轴方向的正应变正应变:四 物理方程2.3 弹性力学基本方程第46页/共67页)2(1EGG 为剪切弹性模量,其中,Gxyxy剪应变剪应变: 应变和应力关应变和应力关系系四 物理方程2.3 弹性力学基本方程第47页/共67页应变和应力关应变和应力关系系四 物理方程第48页/共67页2.4 边界条件第49页/共67页弹性力学的弹性力学的基本未知量基本未知量: 位移分量位移分量,应力分量应力分量和和 应变分量应变分量。基本方程基本方程:平衡微分方程,几何方程和物理方程。:平衡微分方程,几何方程和物理方程。 要使基本方程有确定的解,还要有对应的要使基本方程有确定的解,还要有对应的面力或位移边界条件面力或位移边界条件。 边界条件一般分为:静力(面力)边界条件、位移边界条件和混合边界条件。边界条件一般分为:静力(面力)边界条件、位移边界条件和混合边界条件。 弹性力学的任务:弹性力学的任务:就是在给定的边界条件下,就十五个未知量求解十五个基本方程就是在给定的边界条件下,就十五个未知量求解十五个基本方程。2.4 边界条件第50页/共67页2.4 边界条件一 静力(面力)边界条件第51页/共67页),(),(),(zyxww

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论