版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,关于x的方程f(x)a存在四个不同实数根,则实数a的取值范围是( )A(0,1)(1,e)BCD(0,1)2已知定义在上的奇函数满足:(其中),且在区间上是减函数,令,则,
2、的大小关系(用不等号连接)为( )ABCD3设为等差数列的前项和,若,则ABCD4已知双曲线的一条渐近线方程是,则双曲线的离心率为( )ABCD5设,则,则( )ABCD6下列说法正确的是( )A“若,则”的否命题是“若,则”B“若,则”的逆命题为真命题C,使成立D“若,则”是真命题7定义在上函数满足,且对任意的不相等的实数有成立,若关于x的不等式在上恒成立,则实数m的取值范围是( )ABCD8已知复数z满足,则在复平面上对应的点在( )A第一象限B第二象限C第三象限D第四象限9下列函数中,在定义域上单调递增,且值域为的是( )ABCD10盒中有6个小球,其中4个白球,2个黑球,从中任取个球,
3、在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数,则( )A,B,C,D,11在中,为中点,且,若,则( )ABCD12函数在上的大致图象是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13对于任意的正数,不等式恒成立,则的最大值为_.14在回归分析的问题中,我们可以通过对数变换把非线性回归方程,()转化为线性回归方程,即两边取对数,令,得到.受其启发,可求得函数()的值域是_.15下图是一个算法流程图,则输出的S的值是_.16已知函数的最大值为3,的图象与y轴的交点坐标为,其相邻两条对称轴间的距离为2,则三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤
4、。17(12分)已知函数.() 求函数的单调区间;() 当时,求函数在上最小值.18(12分)已知某种细菌的适宜生长温度为1227,为了研究该种细菌的繁殖数量(单位:个)随温度(单位:)变化的规律,收集数据如下:温度/14161820222426繁殖数量/个2530385066120218对数据进行初步处理后,得到了一些统计量的值,如表所示:20784.11123.8159020.5其中,.(1)请绘出关于的散点图,并根据散点图判断与哪一个更适合作为该种细菌的繁殖数量关于温度的回归方程类型(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表格数据,建立关于的回归方程(结果精确到0.1
5、);(3)当温度为27时,该种细菌的繁殖数量的预报值为多少?参考公式:对于一组数据,其回归直线的斜率和截距的最小二成估计分别为,参考数据:.19(12分)已知椭圆,点,点满足(其中为坐标原点),点在椭圆上.(1)求椭圆的标准方程;(2)设椭圆的右焦点为,若不经过点的直线与椭圆交于两点.且与圆相切.的周长是否为定值?若是,求出定值;若不是,请说明理由.20(12分)已知,(1)求的最小正周期及单调递增区间;(2)已知锐角的内角,的对边分别为,且,求边上的高的最大值21(12分)记数列的前项和为,已知成等差数列.(1)证明:数列是等比数列,并求的通项公式;(2)记数列的前项和为,求.22(10分)
6、椭圆的右焦点,过点且与轴垂直的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)过点且斜率不为0的直线与椭圆交于,两点.为坐标原点,为椭圆的右顶点,求四边形面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】原问题转化为有四个不同的实根,换元处理令t,对g(t)进行零点个数讨论.【详解】由题意,a2,令t,则f(x)a记g(t)当t2时,g(t)2ln(t)(t)单调递减,且g(2)2,又g(2)2,只需g(t)2在(2,+)上有两个不等于2的不等根则,记h(t)(t2且t2),则h(t)令(t),则(t)2(
7、2)2,(t)在(2,2)大于2,在(2,+)上小于2h(t)在(2,2)上大于2,在(2,+)上小于2,则h(t)在(2,2)上单调递增,在(2,+)上单调递减由,可得,即a2实数a的取值范围是(2,2)故选:D【点睛】此题考查方程的根与函数零点问题,关键在于等价转化,将问题转化为通过导函数讨论函数单调性解决问题.2A【解析】因为,所以,即周期为,因为为奇函数,所以可作一个周期-2e,2e示意图,如图在(,)单调递增,因为,因此,选点睛:函数对称性代数表示(1)函数为奇函数 ,函数为偶函数(定义域关于原点对称);(2)函数关于点对称,函数关于直线对称,(3)函数周期为T,则3C【解析】根据等
8、差数列的性质可得,即,所以,故选C4D【解析】双曲线的渐近线方程是,所以,即 , ,即 ,故选D.5A【解析】根据换底公式可得,再化简,比较的大小,即得答案.【详解】,.,显然.,即,即.综上,.故选:.【点睛】本题考查换底公式和对数的运算,属于中档题.6D【解析】选项A,否命题为“若,则”,故A不正确选项B,逆命题为“若,则”,为假命题,故B不正确选项C,由题意知对,都有,故C不正确选项D,命题的逆否命题“若,则”为真命题,故“若,则”是真命题,所以D正确选D7B【解析】结合题意可知是偶函数,且在单调递减,化简题目所给式子,建立不等式,结合导函数与原函数的单调性关系,构造新函数,计算最值,即
9、可.【详解】结合题意可知为偶函数,且在单调递减,故可以转换为对应于恒成立,即即对恒成立即对恒成立令,则上递增,在上递减,所以令,在上递减所以.故,故选B.【点睛】本道题考查了函数的基本性质和导函数与原函数单调性关系,计算范围,可以转化为函数,结合导函数,计算最值,即可得出答案.8A【解析】设,由得:,由复数相等可得的值,进而求出,即可得解.【详解】设,由得:,即,由复数相等可得:,解之得:,则,所以,在复平面对应的点的坐标为,在第一象限.故选:A.【点睛】本题考查共轭复数的求法,考查对复数相等的理解,考查复数在复平面对应的点,考查运算能力,属于常考题.9B【解析】分别作出各个选项中的函数的图象
10、,根据图象观察可得结果.【详解】对于,图象如下图所示:则函数在定义域上不单调,错误;对于,的图象如下图所示:则在定义域上单调递增,且值域为,正确;对于,的图象如下图所示:则函数单调递增,但值域为,错误;对于,的图象如下图所示:则函数在定义域上不单调,错误.故选:.【点睛】本题考查函数单调性和值域的判断问题,属于基础题.10C【解析】根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项.【详解】表示取出的为一个白球,所以.表示取出一个黑球,所以.表示取出两个球,其中一黑一白,表示取出两个球为黑球,表示取出两个球为白球,所以.所以,.故选:C【点睛】本小题主要考查离散型随机变量分
11、布列和数学期望的计算,属于中档题.11B【解析】选取向量,为基底,由向量线性运算,求出,即可求得结果.【详解】, ,.故选:B.【点睛】本题考查了平面向量的线性运算,平面向量基本定理,属于基础题.12D【解析】讨论的取值范围,然后对函数进行求导,利用导数的几何意义即可判断.【详解】当时,则,所以函数在上单调递增,令,则,根据三角函数的性质,当时,故切线的斜率变小,当时,故切线的斜率变大,可排除A、B;当时,则,所以函数在上单调递增,令 ,当时,故切线的斜率变大,当时,故切线的斜率变小,可排除C,故选:D【点睛】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题
12、.二、填空题:本题共4小题,每小题5分,共20分。13【解析】根据均为正数,等价于恒成立,令,转化为恒成立,利用基本不等式求解最值.【详解】由题均为正数,不等式恒成立,等价于恒成立,令则,当且仅当即时取得等号,故的最大值为.故答案为:【点睛】此题考查不等式恒成立求参数的取值范围,关键在于合理进行等价变形,此题可以构造二次函数求解,也可利用基本不等式求解.14【解析】转化()为,即得解.【详解】由题意:().故答案为:【点睛】本题考查类比法求函数的值域,考查了学生逻辑推理,转化划归,数学运算的能力,属于中档题.15【解析】根据流程图,运行程序即得.【详解】第一次运行,;第二次运行,;第三次运行,
13、;第四次运行;所以输出的S的值是.故答案为:【点睛】本题考查算法流程图,是基础题.16【解析】,由题意,得,解得,则的周期为4,且,所以.考点:三角函数的图像与性质.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 ()见解析;()当时,函数的最小值是;当时,函数的最小值是【解析】(1)求出导函数,并且解出它的零点x=,再分区间讨论导数的正负,即可得到函数f(x)的单调区间;(2)分三种情况加以讨论,结合函数的单调性与函数值的大小比较,即可得到当0aln 2时,函数f(x)的最小值是-a;当aln2时,函数f(x)的最小值是ln2-2a【详解】函数的定义域为因为,令,可得;当
14、时,;当时,综上所述:可知函数的单调递增区间为,单调递减区间为当,即时,函数在区间上是减函数,的最小值是当,即时,函数在区间上是增函数,的最小值是当,即时,函数在上是增函数,在上是减函数又,当时,的最小值是;当时,的最小值为综上所述,结论为当时,函数的最小值是;当时,函数的最小值是.【点睛】求函数极值与最值的步骤:(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义域内的所有根;(4) 列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上
15、的最值还需要比较端点值的函数值与极值的大小18(1)作图见解析;更适合(2)(3)预报值为245【解析】(1)由散点图即可得到答案;(2)把两边取自然对数,得,由 计算得到,再将代入可得,最终求得,即;(3)将代入中计算即可.【详解】解:(1)绘出关于的散点图,如图所示:由散点图可知,更适合作为该种细菌的繁殖数量关于的回归方程类型;(2)把两边取自然对数,得,即,由.,则关于的回归方程为;(3)当时,计算可得;即温度为27时,该种细菌的繁殖数量的预报值为245.【点睛】本题考查求非线性回归方程及其应用的问题,考查学生数据处理能力及运算能力,是一道中档题.19(1)(2)是,【解析】(1)设,根
16、据条件可求出的坐标,再利用在椭圆上,代入椭圆方程求出即可;(2)设运用勾股定理和点满足椭圆方程,求出,,再利用焦半径公式表示出,进而求出周长为定值【详解】(1)设,因为,即则,即,因为均在上,代入得,解得,所以椭圆的方程为; (2)由(1)得,作出示意图,设切点为,则,同理即,所以,又,则的周长,所以周长为定值.【点睛】标准方程的求解,椭圆中的定值问题,考查焦半径公式的运用,考查逻辑推理能力和运算求解能力,难度较难.20(1)的最小正周期为:;函数单调递增区间为:;(2).【解析】(1)根据诱导公式,结合二倍角的正弦公式、辅助角公式把函数的解析式化简成余弦型函数解析式形式,利用余弦型函数的最小
17、正周期公式和单调性进行求解即可;(2)由(1)结合,求出的大小,再根据三角形面积公式,结合余弦定理和基本不等式进行求解即可.【详解】(1)的最小正周期为:;当时,即当时,函数单调递增,所以函数单调递增区间为:;(2)因为,所以设边上的高为,所以有,由余弦定理可知:(当用仅当时,取等号),所以,因此边上的高的最大值.【点睛】本题考查了正弦的二倍角公式、诱导公式、辅助角公式,考查了余弦定理、三角形面积公式,考查了基本不等式的应用,考查了数学运算能力.21(1)证明见解析,;(2)【解析】(1)由成等差数列,可得到,再结合公式,消去,得到,再给等式两边同时加1,整理可证明结果;(2)将(1)得到的代入中化简后再裂项,然后求其前项和.【详解】(1)由成等差数列,则,即,当时,又,由可得:,即,时,.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届上海市鲁迅中学高一生物第一学期期末检测试题含解析
- 医疗数据合规性验证的实时反馈机制
- 浙江省嘉兴市嘉善高级中学2026届生物高三上期末学业质量监测试题含解析
- 医疗数据区块链的安全事件应急预案
- 肾课件教学课件
- 医疗数据共享的区块链技术选型与实施路径
- 英语科技论文写作 课件 4-材料与方法写作-30
- 医疗数据共享场景下的区块链隔离策略
- 福建省福州鼓楼区2026届高一数学第一学期期末考试试题含解析
- 搭桥手术患者术后并发症预防
- DZ-T+0155-1995钻孔灌注桩施工规程
- 【当代中国外交(外交学院)】试题及答案
- 在线网课知慧《学术英语写作(天津外国语大学)》单元测试考核答案
- 有序则安之现场定置管理技术
- V型滤池设计计算书2021
- 医院护理培训课件:《老年患者静脉输液的治疗与护理》
- 虚拟交互设计课程标准6
- 中医治疗“气淋”医案15例
- LY/T 1690-2017低效林改造技术规程
- GB/T 24139-2009PVC涂覆织物防水布规范
- 教师幽默朗诵节目《我爱上班》
评论
0/150
提交评论