数学3必修课件_第1页
数学3必修课件_第2页
数学3必修课件_第3页
数学3必修课件_第4页
数学3必修课件_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数 学 3 ( 必 修 )第三章 概率古典概型泰安市创新课ppt之四1引入情景 1、公元1053年,北宋大奖狄青奉命讨伐南方叛乱,他在誓师的时候拿出了100枚铜钱说“我把这100枚铜钱抛向空中,如果一百枚铜钱落地后都是正面向上,那么这次出征就一定能获胜”。那么,同学们想一想有没有可能这一百枚铜钱都正面向上?2、如何求一个随机事件的概率是概率论的一个基本问题,根据我们已经学习过的知识,我们知道,如果随机事件A在n次试验中发生了m次,当试验的次数n很大时,我们可以将事件A发生的频率m/n作为事件A发生概率的近似值。即 P(A)=m/n2课堂训练课堂小结典型例题方法探究基本概念试验2:掷一颗均匀的骰

2、子一次,观察出现的点数有哪几种结果?试验1:掷一枚质地均匀的硬币一次,观察出现哪几种结果?2 种正面朝上反面朝上6 种4点1点2点3点5点6点一次试验可能出现的每一个结果 称为一个基本事件3课堂训练课堂小结典型例题方法探究基本概念123456点点点点点点问题1:(1)(2)在一次试验中,会同时出现 与 这两个基本事件吗?“1点”“2点”事件“出现偶数点”包含哪几个基本事件?“2点”“4点”“6点”不会任何两个基本事件是互斥的任何事件(除不可能事件)都可以表示成基本事件的和事件“出现的点数不大于4”包含哪几个基本事件?“1点”“2点”“3点”“4点”4一次试验可能出现的每一个结果 称为一个基本事

3、件课堂训练课堂小结典型例题方法探究基本概念例1 从字母a、b、c、d任意取出两个不同字母的试验中,有哪些基本事件?解:所求的基本事件共有6个:abcdbcdcd树状图5123456点点点点点点课堂训练课堂小结典型例题方法探究基本概念(“1点”)P(“2点”)P(“3点”)P(“4点”)P(“5点”)P(“6点”)P反面向上正面向上(“正面向上”)P(“反面向上”)P问题2:以下每个基本事件出现的概率是多少?试验 1试验 26课堂训练课堂小结典型例题方法探究基本概念问题3:观察对比,找出试验1和试验2的共同特点:(1)试验中所有可能出现的基本事件的个数只有有限个相等(2)每个基本事件出现的可能性

4、有限性等可能性“1点”、“2点”、“3点”、“4点”、“5点”、“6点” “正面朝上”“反面朝上” 试验结果六种随机事件的可能性相等,即它们的概率都是 骰子质地是均匀的 试验二两种随机事件的可能性相等,即它们的概率都是 硬币质地是均匀的 试验一结果关系试验材料7(1)试验中所有可能出现的基本事件的个数(2)每个基本事件出现的可能性相等只有有限个我们将具有这两个特点的概率模型称为古典概率模型古典概型简称:课堂训练课堂小结典型例题方法探究基本概念有限性等可能性8问题4:向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?有限性等可能性课堂训练课堂小结典

5、型例题方法探究基本概念9问题5:某同学随机地向一靶心进行射击,这一试验的结果有:“命中10环”、“命中9环”、“命中8环”、“命中7环”、“命中6环”、“命中5环”和“不中环”。你认为这是古典概型吗?为什么?有限性等可能性1099998888777766665555课堂训练课堂小结典型例题方法探究基本概念10问题6:你能举出几个生活中的古典概型的例子吗?课堂训练课堂小结典型例题方法探究基本概念11掷一颗均匀的骰子,试验2:问题7:在古典概率模型中,如何求随机事件出现的概率?为“出现偶数点”,事件A请问事件 A的概率是多少?探讨:事件A 包含 个基本事件:246点点点3(A)P(“4点”)P(“

6、2点”)P(“6点”)P(A)P 63方法探究课堂训练课堂小结典型例题基本概念基本事件总数为:?61616163211点,2点,3点,4点,5点,6点12(A)PA包含的基本事件的个数基本事件的总数方法探究课堂训练课堂小结典型例题基本概念古典概型的概率计算公式:要判断所用概率模型是不是古典概型(前提)在使用古典概型的概率公式时,应该注意:练习:1、掷骰子试验中,出现点数不小于3的概率是多少?2、例1中,出现字母“c”的概率是多少?13同时抛掷两枚均匀的硬币,会出现几种结果?列举出来.出现的概率是多少?“一枚正面向上,一枚反面向上”例2解:基本事件有:( , )正正( , )正反( , )反正(

7、 , )反反(“一正一反”)正正反正反反在遇到“抛硬币”的问题时,要对硬币进行编号用于区分典型例题课堂训练课堂小结方法探究基本概念14例3 同时掷两个均匀的骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是9的结果有多少种?(3)向上的点数之和是9的概率是多少? 解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,它总共出现的情况如下表所示:(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(3,6)(3,5)(3,4)(3,3

8、)(3,2)(3,1)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)从表中可以看出同时掷两个骰子的结果共有36种。6543216543211号骰子 2号骰子典型例题课堂训练课堂小结方法探究基本概念列表法一般适用于分两步完成的结果的列举。15(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(2,6)(2,5)(2,4)(2,3)(2,

9、2)(2,1)(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)(6,3)(5,4)(4,5)(3,6)6543216543211号骰子 2号骰子(2)在上面的结果中,向上的点数之和为9的结果有4种,分别为:(3)由于所有36种结果是等可能的,其中向上点数之和为9的结果(记为事件A)有4种,因此,(3,6),(4,5),(5,4),(6,3)16典型例题课堂训练课堂小结方法探究基本概念为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗? 如果不标上记号,类似于(3,6)和(6,3)的结果将没有区别。这时,所有可能的结果将是:(6,6)(6,5)(6,4)(6

10、,3)(6,2)(6,1)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)6543216543211号骰子 2号骰子 (3,6) (4,5) 17因此,在投掷两个骰子的过程中,我们必须对两个骰子加以标号区分(3,6)(3,3)概率不相等?概率相等吗?181.单选题是标准化考试中常用的题型,一般是从、四个选项中选择一个正确的答案。假设考生不会做,他

11、随机地选择了一个答案,则他答对的概率为如果该题是不定项选择题,假如考生也不会做,则他能够答对的概率为多少?探究:此时比单选题容易了,还是更难了?课堂小结典型例题课堂训练方法探究基本概念基本事件总共有几个?“答对”包含几个基本事件?4个:A,B,C,D1个思考:假设有20道单选题,如果有一个考生答对了17道题,他是随机选择的可能性大,还是他掌握了一定的知识的可能性大?19可以运用极大似然法的思想解决。假设他每道题都是随机选择答案的,可以计算出他答对17道题的概率为可以发现这个概率是很小的;如果掌握了一定的知识,绝大多数的题他是会做的,那么他答对17道题的概率会比较大,所以他应该掌握了一定的知识。答:他应该掌握了一定的知识课堂小结典型例题课堂训练方法探究基本概念20课堂小结典型例题课堂训练方法探究2.从,这九个自然数中任选一个,所选中的数是的倍数的概率为基本概念3.一副扑克牌,去掉大王和小王,在剩下的52张牌中随意抽出一张牌,试求以下各个事件的概率:A:抽到一张QB:抽到一张“梅花”C:抽到一张红桃 K思考题同时抛掷三枚均匀的硬币,会出现几种结果?出现的概率是多少?“一枚正面向上,两枚反面向上”21课堂训练典型例题方法探究基本概念列举法(树状图或列表),应做到不重不漏。(2)古典概型的定义和特

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论