安徽省芜湖市2021-2022学年高三下学期联合考试数学试题含解析_第1页
安徽省芜湖市2021-2022学年高三下学期联合考试数学试题含解析_第2页
安徽省芜湖市2021-2022学年高三下学期联合考试数学试题含解析_第3页
安徽省芜湖市2021-2022学年高三下学期联合考试数学试题含解析_第4页
安徽省芜湖市2021-2022学年高三下学期联合考试数学试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数为奇函数,且,则( )A2B5C1D32已知全集,集合,则( )ABCD3已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是( )ABCD4设等差数列的前项和为,若,则( )A10B9C8D75已知等边ABC内接于圆:

2、x2+ y2=1,且P是圆上一点,则的最大值是( )AB1CD26函数的图象可能为( )ABCD7设,为非零向量,则“存在正数,使得”是“”的( )A既不充分也不必要条件B必要不充分条件C充分必要条件D充分不必要条件81777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为( )ABCD9已知双曲线的一条渐近线方程

3、为,则双曲线的离心率为( )ABCD10为研究某咖啡店每日的热咖啡销售量和气温之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(轴表示气温,轴表示销售量),由散点图可知与的相关关系为( )A正相关,相关系数的值为B负相关,相关系数的值为C负相关,相关系数的值为D正相关,相关负数的值为11某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为( )ABCD12已知等差数列的前项和为,且,则( )A45B42C25D36二、填空题:本题共4小题,每小题5分,共20分。13已知向量

4、=(4,3),=(6,m),且,则m=_.14在的二项展开式中,x的系数为_(用数值作答)15已知向量,且向量与的夹角为_.16在的展开式中的系数为,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)2018年反映社会现实的电影我不是药神引起了很大的轰动,治疗特种病的创新药研发成了当务之急为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:研发费用(百万元)2361013151821销量(万盒)1122.53.53.54.56(1)求与的相关系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合?(规

5、定:时,可用线性回归方程模型拟合);(2)该药企准备生产药品的三类不同的剂型,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测第一次检测时,三类剂型,合格的概率分别为,第二次检测时,三类剂型,合格的概率分别为,两次检测过程相互独立,设经过两次检测后,三类剂型合格的种类数为,求的数学期望附:(1)相关系数(2),18(12分)电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”(1)根据已知条件完成下面的列联表,

6、并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女1055合计 (2)将上述调查所得到的频率视为概率现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X)附:.P(K2k)0.050.01k3.8416.63519(12分)在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的参数方程为(为参数),直线经过点且倾斜角为.(1)求曲线的极坐标方程和直线的参数方程;(2)已知直线与曲线交于,满足为的中点,求.20(12分)已知椭圆C的离心率为

7、且经过点(1)求椭圆C的方程;(2)过点(0,2)的直线l与椭圆C交于不同两点A、B,以OA、OB为邻边的平行四边形OAMB的顶点M在椭圆C上,求直线l的方程.21(12分)已知数列和满足:.(1)求证:数列为等比数列;(2)求数列的前项和.22(10分)已知函数()若,求曲线在点处的切线方程;()若在上恒成立,求实数的取值范围;()若数列的前项和,求证:数列的前项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】由函数为奇函数,则有,代入已知即可求得.【详解】.故选:.【点睛】本题考查奇偶性在抽象函数中的应用,考查学

8、生分析问题的能力,难度较易.2D【解析】根据函数定义域的求解方法可分别求得集合,由补集和交集定义可求得结果.【详解】,.故选:.【点睛】本题考查集合运算中的补集和交集运算问题,涉及到函数定义域的求解,属于基础题.3A【解析】先根据奇函数求出m的值,然后结合单调性求解不等式.【详解】据题意,得,得,所以当时,.分析知,函数在上为增函数.又,所以.又,所以,所以,故选A.【点睛】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.4B【解析】根据题意,解得,得到答案.【详解】,解得,故.故选:.【点睛】本题考查了等差数列的求和,意在考查学生的计算能力.5D【解析】如图所示建立直角坐标

9、系,设,则,计算得到答案.【详解】如图所示建立直角坐标系,则,设,则.当,即时等号成立.故选:.【点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.6C【解析】先根据是奇函数,排除A,B,再取特殊值验证求解.【详解】因为,所以是奇函数,故排除A,B,又,故选:C【点睛】本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.7D【解析】充分性中,由向量数乘的几何意义得,再由数量积运算即可说明成立;必要性中,由数量积运算可得,不一定有正数,使得,所以不成立,即可得答案.【详解】充分性:若存在正数,使得,则,得证;必要性:若,则,不一定有正数,使得,故不成立;所以是充分不必要

10、条件故选:D【点睛】本题考查平面向量数量积的运算,向量数乘的几何意义,还考查了充分必要条件的判定,属于简单题.8D【解析】根据统计数据,求出频率,用以估计概率.【详解】.故选:D.【点睛】本题以数学文化为背景,考查利用频率估计概率,属于基础题.9B【解析】由题意得出的值,进而利用离心率公式可求得该双曲线的离心率.【详解】双曲线的渐近线方程为,由题意可得,因此,该双曲线的离心率为.故选:B.【点睛】本题考查利用双曲线的渐近线方程求双曲线的离心率,利用公式计算较为方便,考查计算能力,属于基础题.10C【解析】根据正负相关的概念判断【详解】由散点图知随着的增大而减小,因此是负相关相关系数为负故选:C

11、【点睛】本题考查变量的相关关系,考查正相关和负相关的区别掌握正负相关的定义是解题基础11A【解析】由折线图找出水、电、交通开支占总开支的比例,再计算出水费开支占水、电、交通开支的比例,相乘即可求出水费开支占总开支的百分比.【详解】水费开支占总开支的百分比为.故选:A【点睛】本题考查折线图与柱形图,属于基础题.12D【解析】由等差数列的性质可知,进而代入等差数列的前项和的公式即可.【详解】由题,.故选:D【点睛】本题考查等差数列的性质,考查等差数列的前项和.二、填空题:本题共4小题,每小题5分,共20分。138.【解析】利用转化得到加以计算,得到.【详解】向量则.【点睛】本题考查平面向量的坐标运

12、算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.14-40【解析】由题意,可先由公式得出二项展开式的通项,再令10-3r=1,得r=3即可得出x项的系数【详解】的二项展开式的通项公式为,r=0,1,2,3,4,5,令,所以的二项展开式中x项的系数为.故答案为:-40.【点睛】本题考查二项式定理的应用,解题关键是灵活掌握二项式展开式通项的公式,属于基础题.151【解析】根据向量数量积的定义求解即可【详解】解:向量,且向量与的夹角为,|;所以:()2cos221,故答案为:1【点睛】本题主要考查平面向量的数量积的定义,属于基础题162【解析】首先求出的展开项中的系数,然后

13、根据系数为即可求出的取值.【详解】由题知,当时有,解得.故答案为:.【点睛】本题主要考查了二项式展开项的系数,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)0.98;可用线性回归模型拟合(2)【解析】(1)根据题目提供的数据求出,代入相关系数公式求出,根据的大小来确定结果;(2)求出药品的每类剂型经过两次检测后合格的概率,发现它们相同,那么经过两次检测后,三类剂型合格的种类数为,服从二项分布,利用二项分布的期望公式求解即可.【详解】解:(1)由题意可知,由公式,与的关系可用线性回归模型拟合;(2)药品的每类剂型经过两次检测后合格的概率分别为,由题意, ,.

14、【点睛】本题考查相关系数的求解,考查二项分布的期望,是中档题.18 (1)无关;(2) ,.【解析】(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而可得列联表如下:非体育迷体育迷合计男301545女451055合计7525100将22列联表中的数据代入公式计算,得.因为3.0303.841,所以我们没有充分理由认为“体育迷”与性别有关(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率.由题意知XB(3,),从而X的分布列为X0123PE(X)np.D(X)np(1p)19(1),;(2).【解析】(1)由曲线的参数

15、方程消去参数可得曲线的普通方程,由此可求曲线的极坐标方程;直接利用直线的倾斜角以及经过的点求出直线的参数方程即可;(2)将直线的参数方程,代入曲线的普通方程,整理得,利用韦达定理,根据为的中点,解出即可.【详解】(1)由(为参数)消去参数,可得,即,已知曲线的普通方程为,即,曲线的极坐标方程为,直线经过点,且倾斜角为,直线的参数方程:(为参数,).(2)设对应的参数分别为,.将直线的参数方程代入并整理,得,.又为的中点,即,即,.【点睛】本题考查了圆的参数方程与极坐标方程之间的互化以及直线参数方程的应用,考查了计算能力,属于中档题.20(1)(2)【解析】(1)根据椭圆的离心率、椭圆上点的坐标

16、以及列方程,由此求得,进而求得椭圆的方程.(2)设出直线的方程,联立直线的方程和椭圆的方程,写出韦达定理.根据平行四边形的性质以及向量加法的几何意义得到,由此求得点的坐标,将的坐标代入椭圆方程,化简后可求得直线的斜率,由此求得直线的方程.【详解】(1)由椭圆的离心率为,点在椭圆上,所以,且 解得,所以椭圆的方程为 (2)显然直线的斜率存在,设直线的斜率为,则直线的方程为,设,由消去得,所以,由已知得,所以,由于点都在椭圆上,所以,展开有,又,所以,经检验满足,故直线的方程为.【点睛】本小题主要考查根据椭圆的离心率和椭圆上一点的坐标求椭圆方程,考查直线和椭圆的位置关系,考查运算求解能力,属于中档题.21(1)见解析(2)【解析】(1)根据题目所给递推关系式得到,由此证得数列为等比数列.(2)由(1)求得数列的通项公式,判断出,由此利用裂项求和法求得数列的前项和.【详解】(1)所以数列是以3为首项,以3为公比的等比数列.(2)由(1)知,为常数列,且,【点睛】本小题主要考查根据递推关系式证明等比数列,考查裂项求和法,属于中档题.22 ();();()证明见解析.【解析】试题分析:将,求出切线方程求导后讨论当时和时的单调性证明,求出实数的取值范围先求出、的通项公式,利用当时,得,下面证明:解析:()因为,所以,切点为.由,所以,所以曲

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论