甘肃省定西市陇西县2022年高三下学期第六次检测数学试卷含解析_第1页
甘肃省定西市陇西县2022年高三下学期第六次检测数学试卷含解析_第2页
甘肃省定西市陇西县2022年高三下学期第六次检测数学试卷含解析_第3页
甘肃省定西市陇西县2022年高三下学期第六次检测数学试卷含解析_第4页
甘肃省定西市陇西县2022年高三下学期第六次检测数学试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数在上单调递增,则实数的取值范围是( )ABCD2设函数,若函数有三个零点,则()A12B11C6D33已知,则

2、“mn”是“ml”的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4某几何体的三视图如右图所示,则该几何体的外接球表面积为( )ABCD5正三棱柱中,是的中点,则异面直线与所成的角为( )ABCD6函数的部分图象如图中实线所示,图中圆与的图象交于两点,且在轴上,则下列说法中正确的是A函数的最小正周期是B函数的图象关于点成中心对称C函数在单调递增D函数的图象向右平移后关于原点成中心对称7设集合,若,则( )ABCD8年部分省市将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时

3、选择历史和化学的概率为ABCD9已知复数,则( )ABCD210小明有3本作业本,小波有4本作业本,将这7本作业本混放在-起,小明从中任取两本.则他取到的均是自己的作业本的概率为( )ABCD11已知双曲线C:=1(a0,b0)的右焦点为F,过原点O作斜率为的直线交C的右支于点A,若|OA|=|OF|,则双曲线的离心率为( )ABC2D+112已知曲线,动点在直线上,过点作曲线的两条切线,切点分别为,则直线截圆所得弦长为( )AB2C4D二、填空题:本题共4小题,每小题5分,共20分。13已知集合A,B,若AB中有且只有一个元素,则实数a的值为_14展开式中项系数为160,则的值为_.15在平

4、面直角坐标系xOy中,若圆C1:x2(y1)2r2(r0)上存在点P,且点P关于直线xy0的对称点Q在圆C2:(x2)2(y1)21上,则r的取值范围是_16设,满足约束条件,若的最大值是10,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(为实常数).(1)讨论函数在上的单调性;(2)若存在,使得成立,求实数的取值范围.18(12分)如图,四棱锥中,平面平面,若,四边形是平行四边形,且.()求证:;()若点在线段上,且平面,求二面角的余弦值.19(12分)已知椭圆:的离心率为,直线:与以原点为圆心,以椭圆的短半轴长为半径的圆相切.为左顶点,过点的直

5、线交椭圆于,两点,直线,分别交直线于,两点.(1)求椭圆的方程;(2)以线段为直径的圆是否过定点?若是,写出所有定点的坐标;若不是,请说明理由.20(12分)某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案规定每日底薪100元,外卖业务每完成一单提成2元;方案规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为七组,整理得到如图所示的频率分布直方图.(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率;(2)从以往统计

6、数据看,新聘骑手选择日工资方案的概率为,选择方案的概率为.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案的概率,(3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)21(12分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)过点的直线交椭圆于、两点,若,在线段上取点,使,求证:点在定直线上.22(10分)已知函数(1)若函数在处取得极值1,证明:(2)若恒成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一

7、项是符合题目要求的。1B【解析】对分类讨论,当,函数在单调递减,当,根据对勾函数的性质,求出单调递增区间,即可求解.【详解】当时,函数在上单调递减,所以,的递增区间是,所以,即.故选:B.【点睛】本题考查函数单调性,熟练掌握简单初等函数性质是解题关键,属于基础题.2B【解析】画出函数的图象,利用函数的图象判断函数的零点个数,然后转化求解,即可得出结果【详解】作出函数的图象如图所示,令,由图可得关于的方程的解有两个或三个(时有三个,时有两个),所以关于的方程只能有一个根(若有两个根,则关于的方程有四个或五个根),由,可得的值分别为,则故选B【点睛】本题考查数形结合以及函数与方程的应用,考查转化思

8、想以及计算能力,属于常考题型.3B【解析】构造长方体ABCDA1B1C1D1,令平面为面ADD1A1,底面ABCD为,然后再在这两个面中根据题意恰当的选取直线为m,n即可进行判断【详解】如图,取长方体ABCDA1B1C1D1,令平面为面ADD1A1,底面ABCD为,直线=直线。若令AD1m,ABn,则mn,但m不垂直于若m,由平面平面可知,直线m垂直于平面,所以m垂直于平面内的任意一条直线mn是m的必要不充分条件故选:B【点睛】本题考点有两个:考查了充分必要条件的判断,在确定好大前提的条件下,从mnm?和mmn?两方面进行判断;是空间的垂直关系,一般利用长方体为载体进行分析4A【解析】由三视图

9、知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算【详解】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2,底面为等腰直角三角形,斜边长为,如图:的外接圆的圆心为斜边的中点,且平面,的中点为外接球的球心,半径,外接球表面积故选:A【点睛】本题考查了由三视图求几何体的外接球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键5C【解析】取中点,连接,根据正棱柱的结构性质,得出/,则即为异面直线与所成角,求出,即可得出结果.【详解】解:如图,取中点,连接,由于正三棱柱,则

10、底面,而底面,所以,由正三棱柱的性质可知,为等边三角形,所以,且,所以平面,而平面,则,则/,即为异面直线与所成角,设,则,则,.故选:C.【点睛】本题考查通过几何法求异面直线的夹角,考查计算能力.6B【解析】根据函数的图象,求得函数,再根据正弦型函数的性质,即可求解,得到答案【详解】根据给定函数的图象,可得点的横坐标为,所以,解得,所以的最小正周期, 不妨令,由周期,所以,又,所以,所以,令,解得,当时,即函数的一个对称中心为,即函数的图象关于点成中心对称故选B【点睛】本题主要考查了由三角函数的图象求解函数的解析式,以及三角函数的图象与性质,其中解答中根据函数的图象求得三角函数的解析式,再根

11、据三角函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及运算与求解能力,属于基础题7A【解析】根据交集的结果可得是集合的元素,代入方程后可求的值,从而可求.【详解】依题意可知是集合的元素,即,解得,由,解得.【点睛】本题考查集合的交,注意根据交集的结果确定集合中含有的元素,本题属于基础题.8B【解析】甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B9C【解析】根据复数模的性质即可求解.【详解】,故选:C【点睛】本题主要考查了复数模的性质,属于容易

12、题.10A【解析】利用计算即可,其中表示事件A所包含的基本事件个数,为基本事件总数.【详解】从7本作业本中任取两本共有种不同的结果,其中,小明取到的均是自己的作业本有种不同结果,由古典概型的概率计算公式,小明取到的均是自己的作业本的概率为.故选:A.【点睛】本题考查古典概型的概率计算问题,考查学生的基本运算能力,是一道基础题.11B【解析】以为圆心,以为半径的圆的方程为,联立,可求出点,则,整理计算可得离心率.【详解】解:以为圆心,以为半径的圆的方程为,联立,取第一象限的解得,即,则,整理得,则(舍去),.故选:B.【点睛】本题考查双曲线离心率的求解,考查学生的计算能力,是中档题.12C【解析

13、】设,根据导数的几何意义,求出切线斜率,进而得到切线方程,将点坐标代入切线方程,抽象出直线方程,且过定点为已知圆的圆心,即可求解.【详解】圆可化为.设,则的斜率分别为,所以的方程为,即,即,由于都过点,所以,即都在直线上,所以直线的方程为,恒过定点,即直线过圆心,则直线截圆所得弦长为4.故选:C.【点睛】本题考查直线与圆位置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。132【解析】利用AB中有且只有一个元素,可得,可求实数a的值.【详解】由题意AB中有且只有一个元素,所以,即.故答案为:.【点睛】本题主要考查集合

14、的交集运算,集合交集的运算本质是存同去异,侧重考查数学运算的核心素养.14-2【解析】表示该二项式的展开式的第r+1项,令其指数为3,再代回原表达式构建方程求得答案.【详解】该二项式的展开式的第r+1项为令,所以,则故答案为:【点睛】本题考查由二项式指定项的系数求参数,属于简单题.15【解析】设圆C1上存在点P(x0,y0),则Q(y0,x0),分别满足两个圆的方程,列出方程组,转化成两个新圆有公共点求参数范围.【详解】设圆C1上存在点P(x0,y0)满足题意,点P关于直线xy0的对称点Q(y0,x0),则,故只需圆x2(y1)2r2与圆(x1)2(y2)21有交点即可,所以|r1|r1,解得

15、.故答案为:【点睛】此题考查圆与圆的位置关系,其中涉及点关于直线对称点问题,两个圆有公共点的判定方式.16【解析】画出不等式组表示的平面区域,数形结合即可容易求得结果.【详解】画出不等式组表示的平面区域如下所示:目标函数可转化为与直线平行,数形结合可知当且仅当目标函数过点,取得最大值,故可得,解得.故答案为:.【点睛】本题考查由目标函数的最值求参数值,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析(2)【解析】(1)分类讨论的值,利用导数证明单调性即可;(2)利用导数分别得出,时,的最小值,即可得出实数的取值范围.【详解】(1),.当即时,此时,在上单

16、调递增;当即时,时,在上单调递减;时,在上单调递增;当即时,此时,在上单调递减;(2)当时,因为在上单调递增,所以的最小值为,所以当时,在上单调递减,在上单调递增所以的最小值为.因为,所以,.所以,所以.当时,在上单调递减所以的最小值为因为,所以,所以,综上,.【点睛】本题主要考查了利用导数证明函数的单调性以及利用导数研究函数的存在性问题,属于中档题.18()见解析()【解析】()推导出BCCE,从而EC平面ABCD,进而ECBD,再由BDAE,得BD平面AEC,从而BDAC,进而四边形ABCD是菱形,由此能证明AB=AD.()设AC与BD的交点为G,推导出EC/ FG,取BC的中点为O,连结

17、OD,则ODBC,以O为坐标原点,以过点O且与CE平行的直线为x轴,以BC为y轴,OD为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BF-D的余弦值.【详解】()证明:,即,因为平面平面,所以平面,所以,因为,所以平面,所以,因为四边形是平行四边形,所以四边形是菱形,故;解法一:()设与的交点为,因为平面,平面平面于,所以,因为是中点,所以是的中点,因为,取的中点为,连接,则,因为平面平面,所以面,以为坐标原点,以过点且与平行的直线为轴,以所在直线为轴,以所在直线为轴建立空间直角坐标系.不妨设,则,设平面的法向量,则,取,同理可得平面的法向量,设平面与平面的夹角为,因为,所以二面角的余

18、弦值为.解法二:()设与的交点为,因为平面,平面平面于,所以,因为是中点,所以是的中点,因为,所以平面,所以,取中点,连接、,因为,所以,故平面,所以,即是二面角的平面角,不妨设,因为,在中,所以,所以二面角的余弦值为.【点睛】本题考查求空间角中的二面角的余弦值,还考查由空间中线面关系进而证明线线相等,属于中档题.19(1);(2)是,定点坐标为或【解析】(1)根据相切得到,根据离心率得到,得到椭圆方程.(2)设直线的方程为,点、的坐标分别为,联立方程得到,计算点的坐标为,点的坐标为,圆的方程可化为,得到答案.【详解】(1)根据题意:,因为,所以,所以椭圆的方程为.(2)设直线的方程为,点、的

19、坐标分别为,把直线的方程代入椭圆方程化简得到,所以,所以,因为直线的斜率,所以直线的方程,所以点的坐标为,同理,点的坐标为,故以为直径的圆的方程为,又因为,所以圆的方程可化为,令,则有,所以定点坐标为或.【点睛】本题考查了椭圆方程,圆过定点问题,意在考查学生的计算能力和综合应用能力.20(1)0.4;(2);(3)应选择方案,理由见解析【解析】(1)根据频率分布直方图,可求得该快餐店的骑手的人均日外卖业务量不少于65单的频率,即可估算其概率;(2)根据独立重复试验概率求法,先求得四人中有0人、1人选择方案的概率,再由对立事件概率性质即可求得至少有两名骑手选择方案的概率;(3)设骑手每日完成外卖

20、业务量为件,分别表示出方案的日工资和方案的日工资函数解析式,即可计算两种计算方式下的数学期望,并根据数学期望作出选择.【详解】(1)设事件为“随机选取一天,这一天该快餐店的骑手的人均日外卖业务量不少于65单”.根据频率分布直方图可知快餐店的人均日外卖业务量不少于65单的频率分别为,估计为0.4.(2)设事件为“甲、乙、丙、丁四名骑手中至少有两名骑手选择方案”,设事件,为“甲、乙、丙、丁四名骑手中恰有人选择方案”,则,所以四名骑手中至少有两名骑手选择方案的概率为.(3)设骑手每日完成外卖业务量为件,方案的日工资,方案的日工资,所以随机变量的分布列为 160180200220240260280 0.050.050.20.30.20.150.05;同理,随机变量的分布列为 150180230280330 0.30.30.20.150.05.,建议骑手应选择方案.【点睛】本题考查了频率分布直方图的简单应用,独立重复试验概率的求法,数学期望的求法并由期望作出方案选择

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论