滤波器基本原理和网络结构_第1页
滤波器基本原理和网络结构_第2页
滤波器基本原理和网络结构_第3页
滤波器基本原理和网络结构_第4页
滤波器基本原理和网络结构_第5页
已阅读5页,还剩78页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、滤波器基本原理和网络结构滤波器的原理及分类常用模拟滤波器的设计数字滤波器的基本网络结构及其信号流图内容提要数字滤波器属于线性时不变离散时间系统的范畴。它具有稳定性好、精度高、灵活性大等突出优点。本章主要介绍滤波器的原理及分类、常用模拟滤波器的设计方法及数字滤波器的基本结构第一节 滤波器的原理及分类滤波器基本概念一滤波器分类 二数字滤波器技术要求三一、滤波器基本概念滤波器可以用描述线性时不变系统的输入输出关系的数学函数来表示,如图6-1所示。图6-1 滤波器的时域输入输出关系一、滤波器基本概念若x(n),y(n)的傅里叶变换存在,则输入输出的频域关系为: 在时域中输入输出关系用公式表示为二、滤波

2、器分类 根据滤波器所处理的信号不同:主要分模拟滤波器和数字滤波器两种形式。从功能上分类:滤波器可以分为低通、高通、带通和带阻滤波器。它们的理想幅频特性如图6-3所示。 图6-3 各种理想滤波器的幅频特性 二、滤波器分类从实现的网络结构或者从单位冲激响应分类:数字滤波器可以分成无限脉冲响应(IIR)滤波器和有限脉冲响应(FIR)滤波器。它们都是典型线性时不变离散系统,其系统函数分别为(6-1)(6-2) 三、数字滤波器技术要求常用的数字滤波器一般属于选频滤波器。假设数字滤波器的传递函数 用下式表示 选频滤波器的技术要求一般由幅频特性给出,相频特性一般不作要求,但如果对输出波形有要求,则需要考虑相

3、频特性的技术指标,例如在语音合成、波形传输、图像信号处理等应用场合。如果对输出波形有严格要求,则需要设计线性相位数字滤波器。 三、数字滤波器技术要求图6-4 低通滤波器的技术要求第二节 常用模拟滤波器的设计 模拟滤波器按幅频特性可分为低通、高通、带通和带阻滤波器。设计滤波器时,总是先设计低通滤波器,再通过频带变换将低通滤波器转换成希望类型的滤波器。下面先介绍模拟低通滤波器的设计方法,然后再介绍模拟高通、带通、带阻滤波器的设计方法。 主要内容巴特沃斯低通滤波器设计方法一切比雪夫滤波器的设计方法 二模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计三一、巴特沃斯低通滤波器设计方法巴特沃斯低通滤波

4、器的幅度平方函数用下式表示 (6-8) 下降的速度与阶数N有关,N愈大,幅度下降的速度愈快,过渡带愈窄。幅频特性和N的关系如图6-5所示。 一、巴特沃斯低通滤波器设计方法图 6-5 巴特沃斯幅频特性和N的关系一、巴特沃斯低通滤波器设计方法低通巴特沃斯滤波器的设计步骤如下1)据技术指标 、 、 和 ,用式(6-18)求出滤波器的阶数N。2)按照式(6-14),求出归一化极点 , 将代入式(6-13),得到归一化传递函数 。也可以根据阶数N,直接查表6-1,得到极点 和归一化传递函数 。 一、巴特沃斯低通滤波器设计方法3)将 去归一化。将 代入 ,得到实际的滤波器传递函数 。其中3dB截止频率 ,

5、如果技术指标没有给出,可以按照式(6-19)或式(6-20)求出。 一、巴特沃斯低通滤波器设计方法图6-7 例6-1幅频特性曲线二、切比雪夫滤波器的设计方法 切比雪夫滤波器的幅频特性具有等波纹特性,可用阶数较低的系统满足要求。它有两种型式:幅频特性在通带内是等波纹的、在阻带内是单调的切比雪夫型滤波器;幅频特性在通带内是单调的、在阻带内是等波纹的切比雪夫II型滤波器。采用何种型式切比雪夫滤波器取决于实际用途。 二、切比雪夫滤波器的设计方法切比雪夫I型滤波器的设计方法。图6-8分别画出了阶数N为奇数与偶数时的切比雪夫I型滤波器幅频特性。其幅度平方函数用表示(6-21) 二、切比雪夫滤波器的设计方法

6、图 6-8 切比雪夫型滤波器幅频特性二、切比雪夫滤波器的设计方法高阶切比雪夫多项式的递推公式为(6-23) 图 6-9 N=0,4,5切比雪夫多项式曲线二、切比雪夫滤波器的设计方法图 6-10 切比雪夫型与巴特沃斯低通的曲线二、切比雪夫滤波器的设计方法图 6-11 三阶切比雪夫滤波器的极点分布二、切比雪夫滤波器的设计方法切比雪夫I型滤波器的设计步骤如下: (1)确定技术要求 、 、 和 , 是 时的衰减系数, 是 时的衰减系数,它们为(6-35) (6-36) 二、切比雪夫滤波器的设计方法(2)求滤波器阶数N和参数(3)求归一化传递函数二、切比雪夫滤波器的设计方法为求 ,先按照式(6-29)求

7、出归一化极点 ,i1,2,N。(6-41) 将极点 代入式(6-33)得(4)将 去归一化,得到实际的 ,即(6-42) 二、切比雪夫滤波器的设计方法例6-2 设计低通切比雪夫滤波器,要求通带截止频率 ,通带最大衰减 ,阻带截止频率 ,阻带最小衰减 。解: 1)滤波器的技术要求, , , 二、切比雪夫滤波器的设计方法2)求阶数N和,取N53)求 二、切比雪夫滤波器的设计方法 由式(6-41)求出N5时的极点 ,代入上式,得到4)将 去归一化,得二、切比雪夫滤波器的设计方法在MATLAB中,可以利用函数cheblap设计切比雪夫I型低通滤波器。Cheblap的语法为: z,p,k=cheblap

8、(n,rp),其中n为滤波器的阶数,rp为通带的幅度误差。返回值分别为滤波器的零点、极点和增益。对于例题6-2可以通过如下MATLAB程序完成。二、切比雪夫滤波器的设计方法stoprad=12000;passgain=0-1;stopgain=60;t1=sqrt(10(0-1*passgain)-1);t2=sqrt(10(0-1*stopgain)-1);n=ceil(acosh(t2/t1)/acosh(stoprad/passrad);z,p,k=cheb1ap(n,passgain);syms ra passrad=3000;hs1=k/(i*rad/passrad-p(1)/(i*

9、rad/passrad-p(2)/(i*rad/passrad-p(3)/ (i*rad/passrad-p(4)/(i*rad/passrad-p(5);hs2=10*log10(abs(hs1)2);ezplot(hs2,-12000,12000);grid on;二、切比雪夫滤波器的设计方法得到滤波器的归一化极点位置为:滤波器的增益系数: 得到的滤波器的幅频特性曲线如图6-12所示,满足设计指标。二、切比雪夫滤波器的设计方法图6-12 例6-2幅频特性曲线三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计高通、带通、带阻滤波器的传递函数可以通过频率变换,分别由低通滤波器的传递函数求

10、得,因此不论设计哪一种滤波器,都可以先将该滤波器的技术指标转换为低通滤波器的技术指标,按照该技术指标先设计低通滤波器,再通过频率变换,将低通的传递函数转换成所需类型的滤波器的传递函数。为了防止符号混淆,先规定一些符号如下假设低通滤波器的传递函数用G(s)表示, ;归一化频率用 表示, ,p称为归一化拉氏复变量。三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计所需类型(例如高通) 滤波器的传递函数用 H(s)表示, ;归一化频率用 表示, , q称为归一化拉氏变量, H(q)称为归一化传递函数。 图 6-13 低通与高通滤波器的幅度特性三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的

11、设计(一)低通到高通的频率变换 设低通滤波器的 和高通滤波器 的幅度特性如图6-13所示。图中 、 分别称为低通的归一化通带截止频率和归一化阻带截止频率, 和分别称为高通的归一化通带下限频率和归一化阻带上限频率。下面通过 和 的对应关系,推出其频率变换。由于 和 都是频率的偶函数,可以将 右边曲线和 曲线对应起来,低通的 从 经过 和 到0时,高通 的则从0经过 和 到 ,因此 和 之间的关系为(6-43) 三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计上式即是低通到高通的频率变换公式,如果已知低通 ,则高通 用下式转换 (6-44) 低通和高通的边界频率也用式(6-43)转换。模拟

12、高通滤波器的设计步骤如下(1)确定高通滤波器的技术指标 通带下限频率 ,阻带上限频率 ,通带最大衰减 ,阻带最小衰减 。三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计(2)确定相应低通滤波器的设计指标按照式(6-43),将高通滤波器的边界频率转换成低通滤波器的边界频率,各项设计指标为: 1)低通滤波器通带截止频率 ; 2)低通滤波器阻带截止频率 ; 3)通带最大衰减仍为 ,阻带最小衰减仍为 。(3)设计归一化低通滤波器G(p)。(4)求模拟高通的H(s)。将G(p)按照式(6-44),转换成归一化高通H(q),为去归一化,将 代入H(q)中,得三、模拟滤波器的频率变换模拟高通、带通、

13、带阻滤波器的设计 上式就是由归一化低通直接转换成模拟高通的转换公式。例6-3 设计高通滤波器, 200Hz, 100Hz,幅度特性单调下降, 处最大衰减为3dB,阻带最小衰减 15dB。解:1)高通技术要求 200Hz, 3dB 100Hz, 15dB(6-45) 三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计归一化频率, 2)低通技术要求 1, 3dB,15dB3)设计归一化低通G(p)。采用巴特沃斯滤波器,故 三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计4)求模拟高通H(s),取N3 式中 三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计(二)低通到带通的频率

14、变换低通与带通滤波器的幅频特性如图6-14所示。图中 和 分别称为带通滤波器的通带上限频率和通带下限频率;令B ,称B为通带带宽,一般用B作为归一化参考频率。 和 分别称为下阻带上限频率和上阻带的下限频率。另外定义 ,称 为通带的中心频率,归一化边界频率用下式计算 , , 三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计现在将低通和带通的幅频特性对应起来,得到 和 的对应关系如表6-2所示。图 6-14 带通与低通滤波器的幅频特性表6-2 和的对应关系三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计由 和 的对应关系 ,得(6-46) 由表6-2知 对应 ,代入上式中,有式(6

15、-46)称为低通到带通的频率变换公式。利用该式将低通的边界频率转换成带通的边界频率。下面推导由归一化低通到带通的转换公式。由于将式(6-46)代入上式,得到 三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计将 代入上式,得到为去归一化,将qs/B代入上式,得到(6-47) 因此 (6-48) 上式就是归一化低通直接转换成带通的计算公式。 三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计模拟带通滤波器的设计步骤如下(1)确定模拟带通滤波器的技术指标 带通上限频率 ,带通下限频率 ; 下阻带上限频率 ,上阻带下限频率 ; 通带中心频率 ,通带宽度 。 与以上边界频率对应的归一化边界

16、频率如下: , , , , 还需确定的技术指标有:通带最大衰减 ,阻带最小衰减 。三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计(2)确定归一化模拟低通技术要求 取 和 的绝对值较小的 ;通带的最大衰减为 ,阻带最小衰减为 。(3)设计归一化模拟低通G(p)。(4)由式(6-51)直接将G(p)转换成带阻滤波器H(s)。, , 第三节 数字滤波器的基本网络结构及其信号流图数字滤波器设计首先就是根据给定技术指标设计出滤波器的系统函数H(z)或单位取样响应h(n),然后再选择一定的运算结构将它转变为具体的数字系统。数字滤波器的实现,不管它有多么复杂,它所包含的基本运算只有三种,即乘法、加

17、法和单位延迟。数字滤波器就是这三种基本运算单元按照一定的算法步骤连接起来,而构成一定的数字网络来实现的。信号流图是表达数字滤波器网络结构较好的一种方法。图6-16给出了数字滤波器中三种运算单元的信号流图。利用这些基本运算单元,可以方便地画出差分方程对应的流图。例如表征一简单的一阶FIR数字滤波器的差分方程为y(n)=x(n)+ax(n-1),其对应的信号流图如图6-17所示。表征最简单的一阶IIR数字滤波器的差分方程为y(n)=x(n)+ay(n-1),其对应的信号流图如图6-18所示。图6-16 基本运算的信号流图图6-17 一阶FIR数字滤波器的信号流图图6-18 一阶IIR数字滤波器的信

18、号流图 主要内容 IIR数字滤波器的基本网络结构一 FIR数字滤波器的基本网络结构二一、 IIR数字滤波器的基本网络结构对于特定的数字滤波器,表征它的差分方程或系统函数是唯一的,但由那些基本运算构成的算法可以有很多种。例如, 可以写成 + ,也可写成 。一、 IIR数字滤波器的基本网络结构尽管它们是同一系统函数,但具体算法却不同,因此对应的网络结构也不同。不同的网络结构将有不同的运算误差、稳定性、运算速度,所以网络结构也是数字滤波器研究的重要内容之一。IIR数字滤波器具有下列特点:单位冲激响应h(n)具有无限时宽,即其延伸到无限长;系统函数H(z)在有限Z平面(0|Z|0处收敛,且有(N1)阶

19、极点在z0处,有(N1)个零点位于有限z平面的任何位置。因此FIR滤波器的结构主要是非递归结构,没有输出到输入的反馈。但在频率采样结构等某些结构中也包含有反馈的递归部分。FIR滤波器有以下几种基本结构形式。(-)直接型由于表征FIR数字滤波器的差分方程为 (6-60) 二、 FIR数字滤波器的基本网络结构据此可以直接画出其对应的网络结构,它是x(n)延时链的横向结构,如图6-28所示,称之为直接型结构,也可称之为卷积型或横截型结构,也可画成图6-29的结构。图6-29和图6-28互为转置结构。图6-28 FIR数字滤波器的直接型结构图6-29 FIR数字滤波器直接结构的转置二、 FIR数字滤波

20、器的基本网络结构(二)级联型如将H(z)写成二阶因式的乘积即可得FIR的级联型结构。(6-61) N/2表示取整,若N为偶数,则N1为奇数,故系数 中有一个为零,因为这时有奇数个根。与式(6-61)对应得网络结构表示于图6-30中,(N为奇数)图中每一个二阶因子都用直接型实现,其优点是零点便于调整,因为这种结构的每一节控制一对零点;缺点是其所需的乘法次数比卷积型多,因为系数 的个数比系数h(n)的个数多。二、 FIR数字滤波器的基本网络结构图6-30 FIR数字滤波器的级联型结构二、 FIR数字滤波器的基本网络结构(三)线性相位型FIR数字滤波器最重要的特点是可以设计成具有严格的线性相位,这时它的单位冲激响应有如下特性 偶对称 (6-62) 奇对称 因此,当N为偶数时(6-63) 二、 FIR数字滤波器的基本网络结构当N为奇数时(6-64)式(6-63)意味着实现直接形式网络需N/2次乘法,而式(6-64)则仅需(N1)/2次乘法,它们都不像直接型结构那样需要N次乘法,图6-31a、 b分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论