




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1设集合、是全集的两个子集,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件2已知a0,b0,a+b =1,若 =,则的最小值是( )A3B4C5D63设全集为R,集合,则ABCD4将函数图象上每一点的横坐标变为原来的2倍,再将图像向左平移个单位长度,得到函数的图象,则函数图象的一个对称中心为( )ABCD5已知函数(表示不超过x的最大整数),若有且仅有3个零点,则实数a的取值范围是()ABCD6已知复数满足:(为虚数单位),则( )ABCD7某几何体的三视图如图所示(单位:cm),则该几何体的表面积是( )ABCD8在中,内角A,B,C所对的边分别
3、为a,b,c,D是AB的中点,若,且,则面积的最大值是( )ABCD9若实数满足不等式组则的最小值等于( )ABCD10在平面直角坐标系中,若不等式组所表示的平面区域内存在点,使不等式成立,则实数的取值范围为( )ABCD11已知定义在上的奇函数满足:(其中),且在区间上是减函数,令,则,的大小关系(用不等号连接)为( )ABCD12已知向量,则向量与的夹角为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13角的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(1,2),则sin()的值是_14过直线上一点作圆的两条切线,切点分别为,则的最小值是_.15已知函数为奇函数,
4、则_.16函数的极大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知a0,b0,a+b=2.()求的最小值;()证明:18(12分)如图,四棱锥中,底面是边长为的菱形,点分别是的中点(1)求证:平面;(2)若,求直线与平面所成角的正弦值19(12分)已知函数,函数().(1)讨论的单调性;(2)证明:当时,.(3)证明:当时,.20(12分)已知数列的前n项和为,且n、成等差数列,.(1)证明数列是等比数列,并求数列的通项公式;(2)若数列中去掉数列的项后余下的项按原顺序组成数列,求的值.21(12分)在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立
5、极坐标系,曲线的极坐标方程为;直线的参数方程为 (为参数),直线与曲线分别交于两点(1)写出曲线的直角坐标方程和直线的普通方程;(2)若点的极坐标为,求的值22(10分)已知函数,设的最小值为m.(1)求m的值;(2)是否存在实数a,b,使得,?并说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】作出韦恩图,数形结合,即可得出结论.【详解】如图所示,同时.故选:C.【点睛】本题考查集合关系及充要条件,注意数形结合方法的应用,属于基础题.2C【解析】根据题意,将a、b代入,利用基本不等式求出最小值即可.【详解】a0
6、,b0,a+b=1,当且仅当时取“”号答案:C【点睛】本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.3B【解析】分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.4D【解析】根据函数图象的变换规律可得到解析式,然后将四个选项代入逐一判断即
7、可.【详解】解:图象上每一点的横坐标变为原来的2倍,得到再将图像向左平移个单位长度,得到函数的图象,故选:D【点睛】考查三角函数图象的变换规律以及其有关性质,基础题.5A【解析】根据x的定义先作出函数f(x)的图象,利用函数与方程的关系转化为f(x)与g(x)=ax有三个不同的交点,利用数形结合进行求解即可【详解】当时,当时,当时,当时,若有且仅有3个零点,则等价为有且仅有3个根,即与有三个不同的交点,作出函数和的图象如图,当a=1时,与有无数多个交点,当直线经过点时,即,时,与有两个交点,当直线经过点时,即时,与有三个交点,要使与有三个不同的交点,则直线处在过和之间,即,故选:A【点睛】利用
8、函数零点的情况求参数值或取值范围的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围; (2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.6A【解析】利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.【详解】由,则,所以.故选:A【点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.7D【解析】根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.【详解】根据三视图可知,该几何体为正四棱锥.底面积为.侧面的高为,所以侧面积为
9、.所以该几何体的表面积是.故选:D【点睛】本小题主要考查由三视图判断原图,考查锥体表面积的计算,属于基础题.8A【解析】根据正弦定理可得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式,求出面积的最大值.【详解】中,由正弦定理可得,整理得,由余弦定理,得.D是AB的中点,且,即,即,当且仅当时,等号成立.的面积,所以面积的最大值为.故选:.【点睛】本题考查正、余弦定理、不等式、三角形面积公式和向量的数量积运算,属于中档题.9A【解析】首先画出可行域,利用目标函数的几何意义求的最小值【详解】解:作出实数,满足不等式组表示的平面区域(如图示:阴影部分)由得,由得,平移,易知过点
10、时直线在上截距最小,所以故选:A【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题10B【解析】依据线性约束条件画出可行域,目标函数恒过,再分别讨论的正负进一步确定目标函数与可行域的基本关系,即可求解【详解】作出不等式对应的平面区域,如图所示:其中,直线过定点,当时,不等式表示直线及其左边的区域,不满足题意;当时,直线的斜率,不等式表示直线下方的区域,不满足题意;当时,直线的斜率,不等式表示直线上方的区域,要使不等式组所表示的平面区域内存在点,使不等式成立,只需直线的斜率,解得.综上可得实数的取值范围为,故选:B.【点睛】本题考查由目标函数有解求解参
11、数取值范围问题,分类讨论与数形结合思想,属于中档题11A【解析】因为,所以,即周期为,因为为奇函数,所以可作一个周期-2e,2e示意图,如图在(,)单调递增,因为,因此,选点睛:函数对称性代数表示(1)函数为奇函数 ,函数为偶函数(定义域关于原点对称);(2)函数关于点对称,函数关于直线对称,(3)函数周期为T,则12C【解析】求出,进而可求,即能求出向量夹角.【详解】解:由题意知,. 则 所以,则向量与的夹角为.故选:C.【点睛】本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式 进行计算.二、填空题:本题共4小题,每小题5分,共20分。13【解析】计算sin,再利
12、用诱导公式计算得到答案.【详解】由题意可得x1,y2,r,sin,sin()sin故答案为:【点睛】本题考查了三角函数定义,诱导公式,意在考查学生的计算能力.14【解析】由切线的性质,可知,切由直角三角形PAO,PBO,即可设,进而表示,由图像观察可知进而求出x的范围,再用的式子表示,整理后利用换元法与双勾函数求出最小值.【详解】由题可知,设,由切线的性质可知,则显然,则或(舍去)因为令,则,由双勾函数单调性可知其在区间上单调递增,所以故答案为:【点睛】本题考查在以直线与圆的位置关系为背景下求向量数量积的最值问题,应用函数形式表示所求式子,进而利用分析函数单调性或基本不等式求得最值,属于较难题
13、.15【解析】利用奇函数的定义得出,结合对数的运算性质可求得实数的值.【详解】由于函数为奇函数,则,即,整理得,解得.当时,真数,不合乎题意;当时,解不等式,解得或,此时函数的定义域为,定义域关于原点对称,合乎题意.综上所述,.故答案为:.【点睛】本题考查利用函数的奇偶性求参数,考查了函数奇偶性的定义和对数运算性质的应用,考查计算能力,属于中等题.16【解析】先求函的定义域,再对函数进行求导,再解不等式得单调区间,进而求得极值点,即可求出函数的极大值【详解】函数,令得,当时,函数单调递增;当时,函数单调递减,当时,函数取到极大值,极大值为.故答案为:【点睛】本题考查利用导数研究函数的极值,考查
14、函数与方程思想、转化与化归思想,考查运算求解能力,求解时注意定义域优先法则的应用三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17()最小值为;()见解析【解析】(1)根据题意构造平均值不等式,结合均值不等式可得结果;(2)利用分析法证明,结合常用不等式和均值不等式即可证明.【详解】()则当且仅当,即,时,所以的最小值为()要证明:,只需证:,即证明:,由,也即证明:因为,所以当且仅当时,有,即,当时等号成立所以【点睛】本题考查均值不等式,分析法证明不等式,审清题意,仔细计算,属中档题.18(1)见解析;(2).【解析】(1)取的中点,连接,通过证明,即可证得;(2)建立空间直
15、角坐标系,利用向量的坐标表示即可得解.【详解】(1)证明:取的中点,连接是的中点,又,四边形是平行四边形,又平面平面,平面(2),同理可得:,又平面连接,设,则,建立空间直角坐标系 设平面的法向量为,则,则,取直线与平面所成角的正弦值为【点睛】此题考查证明线面平行,求线面角的大小,关键在于熟练掌握线面平行的证明方法,法向量法求线面角的基本方法,根据公式准确计算.19(1)答案不唯一,具体见解析(2)证明见解析(3)证明见解析【解析】(1)求出的定义域,导函数,对参数、分类讨论得到答案.(2)设函数,求导说明函数的单调性,求出函数的最大值,即可得证.(3)由(1)可知,可得,即又即可得证.【详解
16、】(1)解:的定义域为,当,时,则在上单调递增;当,时,令,得,令,得,则在上单调递减,在上单调递增;当,时,则在上单调递减;当,时,令,得,令,得,则在上单调递增,在上单调递减;(2)证明:设函数,则.因为,所以,则,从而在上单调递减,所以,即.(3)证明:当时,.由(1)知,所以,即.当时,则,即,又,所以,即.【点睛】本题考查利用导数研究含参函数的单调性,利用导数证明不等式,属于难题.20(1)证明见解析,;(2)11202.【解析】(1)由n,成等差数列,可得,两式相减,由等比数列的定义可得是等比数列,可求数列的通项公式;(2)由(1)中的可求出,根据和求出数列,中的公共项,分组求和,
17、结合等比数列和等差数列的求和公式,可得答案.【详解】(1)证明:因为n,成等差数列,所以,所以.,得,所以.又当时,所以,所以,故数列是首项为2,公比为2的等比数列,所以,即.(2)根据(1)求解知,所以,所以数列是以1为首项,2为公差的等差数列.又因为,所以 .【点睛】本题考查等比数列的定义,考查分组求和,属于中档题.21 (1) 曲线的直角坐标方程为即,直线的普通方程为;(2).【解析】(1)利用代入法消去参数方程中的参数,可得直线的普通方程,极坐标方程两边同乘以利用 即可得曲线的直角坐标方程;(2)直线的参数方程代入圆的直角坐标方程,根据直线参数方程的几何意义,利用韦达定理可得结果.【详解】(1)由,得,所以曲线的直角坐标方程为,即, 直线的普通方程为. (2)将直线的参数方程代入并化简、整理,得. 因为直线与曲线交于,两点所以,解得.由根与系数的关系,得,. 因为点的直角坐标为,在直线上.所以, 解得,此时满足.且,故.【点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家族性结肠息肉的临床护理
- 2025-2030中国蒸汽眼罩行业深度调研及投资前景预测研究报告
- 2025-2030中国铁路土地综合开发行业市场发展现状及竞争格局与前景策略研究报告
- 2025-2030中国药品塑料包装袋行业供需分析及发展前景研究报告
- 腺瘤的临床护理
- 儿童白血病的临床护理
- 构音障碍的临床护理
- 如果理解新质生产力
- 2025年中学教师资格考试《综合素质》核心考点特训题库教育哲学试题试卷
- 2025年统计学期末考试题库:数据分析计算题实战演练与解析试卷
- 四川省乐山市(2024年-2025年小学六年级语文)部编版期末考试((上下)学期)试卷及答案
- 2025届徐州市高考英语二模试卷含解析
- 《延续性护理在永久性肠造口患者中的应用研究》4600字(论文)
- 康复人才培养
- 建设工程消防验收现场评定工作报告(第三方机构模板)
- 正确认识孩子性格特
- 《智能建造技术与装备》 课件 第十章 智能施工与智慧工地
- 物业环境部培训课件
- 如何培训加油站站长
- 仓库管理制度及流程(3篇)
- 钢结构大棚安拆专项施工方案
评论
0/150
提交评论