版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级数学第二学期第二十二章四边形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是( )A180B220C240D2602、如图
2、,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D43、如图,E为正方形ABCD边AB上一动点(不与A重合),AB4,将DAE绕着点A逆时针旋转90得到BAF,再将DAE沿直线DE折叠得到DME下列结论:连接AM,则AMFB;连接FE,当F,E,M共线时,AE44;连接EF,EC,FC,若FEC是等腰三角形,则AE44,其中正确的个数有()个A3B2C1D04、如图,四边形ABCD中,A=60,AD=2,AB=3,点M,N分别为线段B
3、C,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )ABCD5、如图,把矩形纸片沿对角线折叠,若重叠部分为,那么下列说法错误的是( )A是等腰三角形B和全等C折叠后得到的图形是轴对称图形D折叠后和相等6、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )A46.5cmB22.5cmC23.25cmD以上都不对7、正八边形的外角和为( )ABCD8、已知正多边形的一个外角等于45,则该正多边形的内角和为()A135B360C1080D1440
4、9、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )A梯形B菱形C矩形D正方形10、如图,将矩形纸片ABCD沿BD折叠,得到BCD,CD与AB交于点E,若140,则2的度数为()A25B20C15D10第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平行四边形ABCD,AD5,AB8,点A的坐标为(3,0)点C的坐标为_2、如图,在矩形ABCD中,AB2,AD2,E为BC边上一动点,F、G为AD边上两个动点,且FEG30,则线段FG的长度最大值为 _3、如图,在矩形ABCD中,对角
5、线AC,BD相交于O,EF过点O分别交AB,CD于E,F,已知AB8cm,AD5cm,那么图中阴影部分面积为_cm24、一个正多边形的每个外角都等于45,那么这个正多边形的内角和为_度5、如图,四边形和四边形都是边长为4的正方形,点是正方形对角线的交点,正方形绕点旋转过程中分别交,于点,则四边形的面积为_三、解答题(5小题,每小题10分,共计50分)1、已知,如图,在平面直角坐标系内,点A的坐标为(0,12),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(9,3)(1)求直线l1,l2的表达式;(2)点C为直线OB上一动点(点C不与点O,B重合),作CDy轴交直线l2于点D,过
6、点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF设点C的纵坐标为n,求点D的坐标(用含n的代数式表示);若矩形CDEF的面积为48,请直接写出此时点C的坐标2、如图是两张1010的方格纸,方格纸中的每个小正方形的边长均为1请在方格纸中分别画出符合要求的格点四边形(格点四边形是指四边形的各顶点均在小正方形的顶点上):(1)请在图1中,画出一个面积为24,且它是中心对称图形不是轴对称图形(2)请在图2中,画出一个周长为24,且既是中心对称图形也是轴对称图形3、已知:在中,平分延长到,使,为中点,连接,过作的平行线与延长线交于点,连接,交于点(1)补全图形;(2)用等式表示线段,与的数量
7、关系并证明;(3)若,用等式表示线段与的数量关系并证明4、问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:如图(1),在正ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若BON60,则BMCN;如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若BON90,则BMCN然后运用类似的思想提出了如下命题:如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若BON108,则BMCN任务要求:(1)请你从三个命题中选择一个进行证明;(2)请你继续完成下面的探索;在正n(n3)边形ABCDEF中,M、N分
8、别是CD、DE上的点,BM与CN相交于点O,试问当BON等于多少度时,结论BMCN成立(不要求证明);如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,BON108时,试问结论BMCN是否成立若成立,请给予证明;若不成立,请说明理由5、(1)如图1,ADC=120,BCD=140,DAB和CBE的平分线交于点,则AFB的度数是 ;(2)如图2,若ADC=,BCD=,且,DAB和CBE的平分线交于点,则AFB= (用含,的代数式表示); (3)如图3,ADC=,BCD=,当DAB和CBE的平分线AG,BH平行时,,应该满足怎样的数量关系?请说明理由;(4)如
9、果将(2)中的条件改为,再分别作DAB和CBE的平分线,AFB与,满足怎样的数量关系?请画出图形并直接写出结论-参考答案-一、单选题1、C【分析】根据四边形内角和为360及等边三角形的性质可直接进行求解【详解】解:由题意得:等边三角形的三个内角都为60,四边形内角和为360,;故选C【点睛】本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键2、C【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出D
10、F=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键
11、3、A【分析】正确,如图1中,连接AM,延长DE交BF于J,想办法证明BFDJ,AMDJ即可;正确,如图2中,当F、E、M共线时,易证DEA=DEM=67.5,在MD上取一点J,使得ME=MJ,连接EJ,设AE=EM=MJ=x,则EJ=JD=x,构建方程即可解决问题;正确,如图3中,连接EC,CF,当EF=CE时,设AE=AF=m,利用勾股定理构建方程即可解决问题【详解】解:如下图,连接AM,延长DE交BF于J,四边形ABCD是正方形,AB=AD,DAE=BAF=90,由题意可得AE=AF,BAFDAE(SAS),ABF=ADE,ADE+AED=90,AED=BEJ,BEJ+EBJ=90,BJ
12、E=90,DJBF,由翻折可知:EA=EM,DM=DA,DE垂直平分线段AM,BFAM,故正确;如下图,当F、E、M共线时,易证DEA=DEM=67.5,在MD上取一点J,使得ME=MJ,连接EJ,则由题意可得M=90,MEJ=MJE=45,JED=JDE=22.5,EJ=JD,设AE=EM=MJ=x,则EJ=JD=x,则有x+x =4,x=44,AE=44,故正确;如下图,连接CF,当EF=CE时,设AE=AF=m,则在BCE中,有2m=4+(4-m)2,m=44或-44 (舍弃),AE=44,故正确;故选A【点睛】本题考查旋转变换,翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等
13、知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考选择题中的压轴题4、A【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值 连接DB,过点D作DHAB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:ED=EM,MF=FN, EF=DN, DN最大时,EF最大, N与B重合时DN=DB最大,在RtADH中, A=60 AH=2=1,DH=,BH=ABAH=31=2, DB=, EFmax=DB=, EF的最大值为故选A【点睛】本题考查了三角形的中位线定理
14、,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键5、D【分析】根据题意结合图形可以证明EB=ED,进而证明ABECDE;此时可以判断选项A、B、D是成立的,问题即可解决【详解】解:由题意得:BCDBFD,DC=DF,C=F=90;CBD=FBD,又四边形ABCD为矩形,A=F=90,DEBF,AB=DF,EDB=FBD,DC=AB,EDB=CBD,EB=ED,EBD为等腰三角形;在ABE与CDE中,ABECDE(HL);又EBD为等腰三角形,折叠后得到的图形是轴对称图形;综上所述,选项A、B、C成立,不能证明D是正确的,故说法错误的是D,故选:D【点睛】本题主要考
15、查了翻折变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答6、C【分析】如图所示,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是DEF的中位线,则,即可得到DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可【详解】解:如图所示,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是DEF的中位线,DEF的周长,同理可得:GHI的周长,第三次作中位线得到的三角形周长为,第四次作中位线得到的三角形周长为第三次作中位线得到的三角形周长为这五个新三角形的周长之和为,
16、故选C【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理7、A【分析】根据多边形的外角和都是即可得解【详解】解:多边形的外角和都是,正八边形的外角和为,故选:A【点睛】此题考查了多边形的内角与外角,熟记多边形的外角和是是解题的关键8、C【分析】先利用正多边形的每一个外角为 求解正多边形的边数,再利用正多边形的内角和公式可得答案.【详解】解: 正多边形的一个外角等于45, 这个正多边形的边数为: 这个多边形的内角和为: 故选C【点睛】本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.9、B【分析】根据题意得到
17、,然后根据菱形的判定方法求解即可【详解】解:由题意可得:,四边形是菱形故选:B【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法菱形的判定定理:四条边都相等四边形是菱形;一组邻边相等的平行四边形是菱形;对角线垂直的平行四边形是菱形10、D【分析】根据矩形的性质,可得ABD40,DBC50,根据折叠可得DBCDBC50,最后根据2DB CDBA进行计算即可【详解】解:四边形ABCD是矩形,ABC90,CDAB,ABD=140,DBCABC-ABD=50,由折叠可得DB CDBC50,2DB CDBA504010,故选D【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算
18、的应用,关键是求出DBC和DBA的度数二、填空题1、(8,4)【分析】先根据勾股定理得到OD的长,即可得到点D的坐标,再根据平行四边形的性质和平行x轴两点坐标特征即可得到点C的坐标【详解】解:点A的坐标为(3,0),在RtADO中,AD5, AO=3,OD=,D(0,4),平行四边形ABCD,AB=CD=8,ABCD,AB在x轴上,CDx轴,C、D两点的纵坐标相同,C(8,4) 故答案为(8,4)【点睛】本题考查平行四边形性质,勾股定理,平行x轴两点坐标特征,解答本题的关键是熟练掌握平行于x轴的直线上的点的纵坐标相同,平行于y轴的直线上的点的横坐标相同2、【分析】如图所示,在中,FG边的高为A
19、B=2,FEG=30,为定角定高的三角形,故当E与B点或C点重合,G与D点重合或F与A点重合时,FG的长度最大,则由矩形ABCD中,AB2,AD2可知,ABD=60,故ABF=60-30=30,则AF=,则FG=AD-AF=【详解】如图所示,在中,FG边的高为AB=2,FEG=30,为定角定高的三角形故当E与B点或C点重合,G与D点重合或F与A点重合时,FG的长度最大矩形ABCD中,AB2,AD2ABD=60ABF=60-30=30AF=FG=AD-AF=故答案为:【点睛】本题考查了四边形中动点问题,图解法数学思想依据是数形结合思想 它的应用能使复杂问题简单化、 抽象问题具体化 特殊四边形的几
20、何问题, 很多困难源于问题中的可动点 如何合理运用各动点之间的关系,同学们往往缺乏思路, 常常导致思维混乱实际上求解特殊四边形的动点问题,关键是是利用图解法抓住它运动中的某一瞬间,寻找合理的代数关系式, 确定运动变化过程中的数量关系, 图形位置关系, 分类画出符合题设条件的图形进行讨论, 就能找到解决的途径, 有效避免思维混乱3、10【分析】利用矩形性质,求证,将阴影部分的面积转为的面积,最后利用中线平分三角形的面积,求出的面积,即可得到阴影部分的面积【详解】解:四边形为矩形, , 在与中, 阴影部分的面积最后转化为了的面积,中, 平分, 阴影部分的面积:,故答案为:10【点睛】本题主要是考查
21、了矩形的性质以全等三角形的判定与性质以及中线平分三角形面积,熟练利用矩形性质,证明三角形全等,将阴影部分面积转化为其他图形的面积,这是解决本题的关键4、1080【分析】利用多边形的外角和为360计算出这个正多边形的边数,然后再根据内角和公式进行求解即可【详解】解:正多边形的每一个外角都等于,正多边形的边数为36045=8,所有这个正多边形的内角和为(8-2)180=1080故答案为:1080【点睛】本题考查了多边形内角与外角等知识,熟知多边形内角和定理(n2)180 (n3)和多边形的外角和等于360是解题关键5、4【分析】过点O作OGAB,垂足为G,过点O作OHBC,垂足为H,把四边形的面积
22、转化为正方形OGBH的面积,等于正方形ABCD面积的【详解】如图,过点O作OGAB,垂足为G,过点O作OHBC,垂足为H,四边形ABCD的对角线交点为O,OA=OC,ABC=90,AB=BC,OGBC,OHAB,四边形OGBH是矩形,OG=OH=,GOH=90,=4,FOH+FOG=90,EOG+FOG=90,FOH=EOG,OGE=OHF=90,OG=OH,OGEOHF,=4,故答案为:4【点睛】本题考查了正方形的性质,三角形的全等与性质,补形法计算面积,熟练掌握正方形的性质,灵活运用补形法计算面积是解题的关键三、解答题1、(1)yx,yx+12;(2)(3n,3n+12);(3,1)或C(
23、12,4)【分析】(1)从图中看以看出l1是正比例函数,l2是一次函数,根据点A、B的坐标,用待定系数法即可求得l1、l2的解析式;(2)已知点C的纵坐标及点C在直线l1上,求得点C的横坐标;进而知道了点D的横坐标,点D在直线l2上,易得点D的坐标;根据点C与点D坐标,求出CF|3n|,CD|3n+12n|4n+12|,利用矩形的面积长宽,列出关于n的方程,解方程即可【详解】解:(1)设直线l1的表达式为yk1x,过点B(9,3),9k13,解得:k1,直线l1的表达式为yx;设直线l2的表达式为yk2x+b,过点A (0,12),B(9,3),解得:,直线l2的表达式yx+12;(2)点C在
24、直线l1上,且点C的纵坐标为n,nx,解得:x3n,点C的坐标为(3n,n),CDy轴,点D的横坐标为3n,点D在直线l2上,y3n+12,D(3n,3n+12);C(3n,n),D(3n,3n+12),CF|3n|,CD|3n+12n|4n+12|,矩形CDEF的面积为60,S矩形CDEFCFCD|3n|4n+12|48,解得n1或n4,当n1时,3n3,故C(3,1),当n4时,3n112,故C(12,4)综上所述,点C的坐标为:(3,1)或C(12,4)【点睛】本题考查待定系数法求一次函数的解析式,勾股两点距离,矩形面积,解一元二次方程,掌握待定系数法求一次函数的解析式,勾股两点距离,矩
25、形面积,解一元二次方程是解题关键2、(1)画图见解析;(2)画图见解析【分析】(1)利用平行四边形的性质结合其面积求法得出答案,答案不唯一;(2)利用矩形的性质结合其周长得出答案,答案不唯一【详解】解:(1)如图1所示:(2)如图2所示:答案不唯一【点睛】本题主要考查了画轴对称图形和中心对称图形,解决本题的关键是要熟练正确把握中心对称图形和轴对称图形的性质3、(1)见解析(2)AF=CD+DE,见解析;(3)CG=BD,见解析【分析】(1)根据题意不全图形即可;(2)根据“AAS”证明AOFCOE即可;(3)连接CF,AE,先证明先证明AD=AE,再四边形AECF是平行四边形,然后证明,ACD
26、FDC,可得CDG=DCG,然后可证结论成立(1)解:如图所示,(2)AF=CD+DE,理由:AF/BC,CAF=ACE,为中点,AO=CO在AOF和COE中,AOFCOE,AF=CECE=CD+DE,AF=CD+DE;(3)CG=BD,理由:连接CF,AE,DB=BE,AB垂直平分DE,AD=AEAF/CE,AF=CE,四边形AECF是平行四边形,CF=AE,CF=AD,作FHBC,交BC的延长线于点H,AF/CE,FH=AB在FHC和ABD中,FHCABD,FCH=ADB,FCD=ADC在ACD和FDC中,ACDFDC,FDC=ACD=45,CGD=90,CG=DG,平分,DG=DB,CG
27、=DB【点睛】本题考查了复杂作图,全等三角形的判定与性质,角平分线的性质,线段垂直平分线的判定与性质,以及平行四边形的判定与性质,正确作出辅助线是解答本题的关键4、(1)选或或,证明见详解;(2)当时,结论成立;当时,还成立,证明见详解【分析】(1)命题,根据等边三角形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题,根据正方形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题,根据正五边形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;(2)根据(1)中三个命题的结果,得出相应规律,即可得解;连接BD、CE,根据全等三角形的判定定理和性质可得:, ,利用各角之间的关系及等量代换可得:, ,继续利用全等三角形的判定定理和性质即可得出证明【详解】解:(1)如选命题,证明:如图所示: , , , ,在 与CAN中, , ; 如选命题,证明:如图所示: , , , ,在 与CDN中, , ;如选命题,证明:如图所示: , , , ,在 与CDN中, , ;(2)根据(1)中规律可得:当时,结论成立;答:当时,成立证明:如图所示,连接BD、CE,在和中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年钦州市灵山县赴高校招聘教师135人备考题库及1套参考答案详解
- 基于实践导向的初中科技创新社团活动课程设计与实施教学研究课题报告
- 2025年定西市通渭县公开招聘乡村医生7人备考题库及1套参考答案详解
- 2025年巧家县社会工作协会面向社会公开招聘政府购买社会救助服务人员备考题库及答案详解一套
- 2025年新疆天筑建工集团有限公司备考题库及1套完整答案详解
- 2025年丽江文化旅游学院招聘140名教师备考题库附答案详解
- 2025年永州市零陵区阳光社会工作服务中心招聘人员备考题库及一套答案详解
- 2025年天津北海油人力资源咨询服务有限公司招聘外包工作人员备考题库完整参考答案详解
- 2025年国有企业招聘工作人员备考题库带答案详解
- 2025年浙江中医药大学临床医学院及直属附属医院公开招聘277人备考题库参考答案详解
- 广西贵百河2025-2026学年高一上学期12月联考语文试题
- 2025四川航天川南火工技术有限公司招聘考试题库及答案1套
- 广东广电网络2026届秋季校园招聘185人备考题库完整答案详解
- 2025年度皮肤科工作总结及2026年工作计划
- (一诊)成都市2023级高三高中毕业班第一次诊断性检测物理试卷(含官方答案)
- 四川省2025年高职单招职业技能综合测试(中职类)汽车类试卷(含答案解析)
- 2024江苏无锡江阴高新区招聘社区专职网格员9人备考题库附答案解析
- 2025西部机场集团航空物流有限公司招聘笔试考试备考试题及答案解析
- 智能制造执行系统(MES)应用案例教程 课件全套 项目1-9 生产工序开工、报工和检验 -特殊生产情况管理
- 植入类器械规范化培训
- 生物样本库解决方案
评论
0/150
提交评论