




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、【人教版初中数学知识点总结9】 七年级数学上册有理数1.正数和负数负数:比0小的数正数:比0大的数 0既不是正数,也不是负数 2.有理数:整数和分数统称有理数 .正整数、0、负整数统称为整数(0和正整数统称为自然 数).正分数和负分数统称为分数理解:只有能化成分数的数 才是有理数。兀 是无限不循环小数,不能写成分数形式,不 是有理数。有限小数和无限循环小数都可化成分数,都是有 理数。3 .有理数的分类按有理数的意义分类按正、负来分正整数正整数整数0正有理数正分数有理数负整数有理数 0负整 数分数正分数负有理数负分数负分数总结:整数、0统称为非负整数(也叫自然数);负整数、0统称为非正整数;正有
2、理数、0统称为非负有理数;负有理数、0统称为非正有理数。-a 不一定是负数,+a也不一定是正数;p 不是有理数。.数轴:数轴是规定了原点、正方向、单位长度的一条直第1 页共24 页 线叫做数轴。原点、正方向、单位长度是数轴的三要素,三者缺一不可;同一数轴上的单位长度要统一;.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;6 .数轴上特殊的最大(小)数最小的自然数是0,无最大的自然数;最小的正整数是1,无最大的正整数;最大的负整数是-1 ,无最小
3、的负整数7.相反数:符号 相反,数字相同的两个数,我们说其中一个是另一个的相反 数。0的相反数还是0。相反数的和为0? a+b=0? a、b互为相反数.相反数的非零 两数商为-1,即a, b互为相反数,则=-1(a0,b0)8 .相反数的 表示方法:要表示一个数的相反数,只要在它的前面添上负号“-9.多重符号的化简:同号得正,异号得负 10.绝对值的 代数定义:正数的绝对值是其本身,0的绝对值是0,负数的绝对第2 页共24 页值是它的相反数。绝对值可表示为:或;.倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a中0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1 ? a、b互为
4、负倒数。.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;一个数与0相加,仍得这个数.(4)相反两数相加得0。有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b) +c=a+ (b+c) .13.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+ (-b) .14.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;第3 页共24 页各个因式都不为零,积的符号由负因
5、式的个数决定。当负因式的个数为奇数时,乘积为负;当负因式的个数为偶数时,乘积为正。有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab) c=a (bc);(3)乘法的分配律:a (b+c) =ab+ac.15 .有理数除法法 则:除以一个不为0数,等于乘以这个数的倒数;注意:零不能做除数,.16. (1)乘方的定义:求n个相同 因数a的积的运算叫做乘方,乘方的结果叫窑, a叫底数,n叫 次数。.有理数乘方的法则:(1)正数的任何次事都是正数;(2)负数的奇次窑是负数;负数的偶次窑是正数;0 的任何正整数次窑都是 0。.有理数的混合运算法则:先乘方,后乘除,最后加 减
6、,如果有括号,先算括号里面的。.科学记数法:把一个大于 10的数记成aX10n的形 式,其中,n是整数,这种记数法叫做科学记数法。.近似数的精确位:第4 页共24 页一个近似数,四舍五入到那一位,就说这个近似数的精确 到那一位.21 .有效数字:从左边第一个不为零的数字起,到精 确的位数止,所有数字,都叫这个近似数的有效数字.整式1.代数式:用基本运算符号把数和字母连接而成的式子叫做代 数式,如n,-1,2n+500,abc 。单独的一个数或一个字母也是代 数式。.单项式:表示数与字母的乘积的代数式叫单项式。单独 的一个数或一个字母也是代数式。.单项式的系数:单项式中的数字因数叫做单项式的系
7、数。注意:单项式是由系数、字母、字母的指数构成的,其中 系数不能用带分数表示,如,这种表示就是错误的,应写成。.单项式的次数:一个单项式中,所有字母的指数和叫做 多项式的次数。.多项式:几个单项式的和叫做多项式。每个单项式叫做 多项式的项,不含字母的项叫做常数项。多项式里次数最高项 的次数,叫做这个多项式的次数。常数项的次数为0。.整式:单项式和多项式统称为整式。注意:分母上含有字母的不是整式。.同类项:所含字母相同,并且相同字母的指数也相同的 项叫做同类项。第5 页共24 页合并同类项的法则:同类项的系数相加,所得的结果作为 系数,字母和字母的指数不变。.去括号法则:括号前面是十号,去掉括号
8、和十号,括号里面的每一项都不 变号。括号前面是一号,去掉括号和一号,括号里面的每一项要 变号。.整式的加减:进行整式的加减运算时,如果有括号先去 括号,再合并同类项。一元一次方程1.方程:含有未知数的等式叫做方程。.方程的解:能使方程两边相等的未知数的值叫做方程的 解。.等式的性质(1)等式的两边都加上(或减去)同一个 数或同一个整式,所得结果仍是等式。(2)等式的两边都乘以(或除以)同一个数(除数不能是 零),所得结果仍是等式。. 一元一次方程:只含有一个未知数,并且未知数的最高 次数是1次的整式方程叫做一元一次方程,其中方程叫做一元 一次方程的标准形式,a是未知数x的系数,b是常数项。.
9、一元一次方程解法的一般步骤:整理方程去分母去括号移项合并同类第6 页共24 页 项系数化为1(检验方程的解).6 .移项法则:移项 要变号7.列方程解应用题的常用公式:(1)行程问题:距离=速度时间;(2)工程问题:工作量=工效工时;(3)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流 速度;(4)商品价格问题:售价=定价折,利润=售价-成本,;(5)周长、面积、体积问题:C圆=2兀R S圆二兀R2, C长方形=2(a+b) , S长方形=ab, C正方形=4a, S正方形=a2, S 环形=兀(R2-,V 长方体=abc, V正方体=a3, V圆柱=兀R2h, V圆锥二兀
10、R2h.图形的认识初步1.几何图形的分类立体图形: 棱柱、棱锥、圆柱、圆锥、球等.平面图形:三角形、四边形、 圆等.几何图形2.立体图形与平面图形的相互转化(1)立体 图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面 图形按一定的途径进行折叠就会得到相应的立体图形。(2)从不同方向看:第7 页共24 页主(正)视图 从正面看几何体的二视图(左、右)视图- 从左(右)边看俯视图 从上面看(3)几何体的构成元素及关系几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.3.直线,射线与线段的区别与联系4.点和直线的位置关系有线面
11、两种:点在直线上,或者说直线经过这个点。点在直线外,或者说直线不经过这个点。5.基本性质(1)直线公理:两点确定一条直线.(2)线段公 理:两点之间,线段最短.(3)两点间的距离:连接两点的线段 的长度,叫做两点间的距离.6.线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:7 .角的定义:有公共端点的两条射线组成的图形叫做角, 这个公共端点是角的顶点,这两条射线是角的两条边;止匕外,角也可以看作由一条射线绕着它的端点旋转而形成 的图形.8.角的表示方法:角通常有三种表示方法:一是用三个 大写英文字母表示,端点的字母写在中间;二是用角的顶点的一个大写英文字母表示;三是用一
12、个小写希腊字母或一个数字表示.例如下图:第8 页共24 页注意:当一个角的顶点有多个角的时候,不能用顶点的一 个大写字母来表示.9.角度制及角度的换算1周角=360 , 1平 角二180。,1。=60 , 1 =60,以度、分、秒为单位的角的 度量制,叫做角度制.10.角的分类/ B锐角直角钝角平角周角 范围0V / B V 90 / B =90 90 a;时,不等式的公共解集 为b0时,图象主要经过第一、三象限;此时,y随x的增大而增大;(2)当k0时,直线交y轴于正半轴;(4)当b0时,直线y二kx经过三、一象限,y随x的增大 而增大;(2)当k0时,向上平移;当b0一元二次方程有两个不相
13、等的实根;(2)b2-4ac=0一元二次方程有两个相等的实数;b2-4ac0时,抛物线的开口向上;当a0时,抛物线的开口向上;当a0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大(2)当a0时,一元二次 方程有两个不相等的实根,二次函数图像与x轴有两个交点;=0 时,一元二次方程有两个相等的实根,二次函数图像与x轴有一个交点;0时双曲线的两支分别位于第一、第 三象限,在每个象限内y值随x值的增大而减小;第17 页共24 页(2)当kv0时双曲线的两支分别位于第二、第四象限, 在每个象限内y值随x值的增大而增大。4 .反比例函数解析式的确定由于在反比例函数中,只有一 个待定系数,
14、因此只需要一对对应值或图像上的一个点的坐 标,即可求出k的值,从而确定其解析式。相似1.相似:相同形状的图形叫相似图形。相似图形强调 图形形状相同,与它们的位置、大小无关。.相似三角形:对应角相等,对应边成比例的两个三角形 叫做相似三角形。相似多边形对应边的比叫做相似比。.相似形的性质:对应边成比例,对应角相等。.成比例线段(简称比例线段):对于四条线段a、b、 c、d,如果其中两条线段的长度的比与另两条线段的长度的比 相等,即(或a: b=c: d),那么,这四条线段叫做成比例线 段,简称比例线段。如果作为比例内项的是两条相同的线段, 即或a: b=b: c,那么线段b叫做线段a, c的比例
15、中项。.成比例线段的性质(1)基本性质:如果,那么ad=bc;如果 ad=bc,。(2)合比性质:(3)等比性质:.黄金分割:用一点 P将一条线段AB分割成大小两条线第18 页共24 页段,若小段与大段的长度之比等于大段与全长之比,则可得出 这一比值等于0 618。这种分割称为黄金分割,分割点P叫做线段AB的黄金分割点,较长线段叫做较短线段与全线段的比 例中项。.平行线分线段成比例定理:三条平行线截两条直线,所 得的对应线段成比例。.两条直线被一组平行线所截,所得的对应线段成比例。.平行于三角形一边的直线截其他两边 (或两边的延长线),所得的对应线段成比例。.三角形相似的判定方法:定义法:对应
16、角相等,对应 边成比例的两个三角形相似。平行法:平行于三角形一边的直线和其他两边(或两边 的延长线)相交,所构成的三角形与原三角形相似。判定定理1:如果一个三角形的两个角与另一个三角形 的两个角对应相等,那么这两个三角形相似,可简述为两角对 应相等,两三角形相似。判定定理2:如果一个三角形的两条边和另一个三角形 的两条边对应相等,并且夹角相等,那么这两个三角形相似, 可简述为两边对应成比例且夹角相等,两三角形相似。判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边第19 页共24 页 对应成比例,两三角形相似。.直角三角形相似判定定理:以上各
17、种判定方法均适用 定理:如果一个直角三角形的斜边和一条直角边与另一个直 角三角形的斜边和一条直角边对应成比例,那么这两个直角三 角形相似。垂直法:直角三角形被斜边上的高分成的两个直角三角 形与原三角形相似。.相似三角形的性质:(1)相似三角形的对应角相等, 对应边成比例(2)相似三角形对应高的比、对应中线的比与对 应角平分线的比都等于相似比(3)相似三角形周长的比等于相 似比(4)相似三角形面积的比等于相似比的平方。.位似图形:如果两个图形不仅是相似图形,而且每组 对应点的连线交于一点,对应边互相平行,那么这两个图形叫 做位似图形,这个点叫做位似中心,这时的相似比又称为位似 比。.位似图形的性
18、质、位似图形的对应点和位似中心在同 一直线上,它们到位似中心的距离之比等于相似比。、位似多边形的对应边平行或共线。、位似可以将一个图形放大或缩小。. 一般的,在平面直角坐标系中,如果以原点为位似中 心,新图形与原图形的相似比为 k,那么与原图形上的点(x,第20 页共24 页y)对应的位似图形上的点的坐标为(kx, ky)或(-kx ,-ky)。.位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。.根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。、,、上 、 注思:位似是一种具有位置关系的相似,所以两个图
19、形是位似图形,必定是相似图形,而相似图形不一定是位似图形;两个位似图形的位似中心只有一个;两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;位似比就是相似比.利用位似图形的定义可判断两个图形是否位似;锐角三角函数一、各种锐角三角函数的定义1.正弦:在ABC中,/C=90把锐角A的对边与斜边的比值叫做/A 的正弦,记作sinA =2.余弦:在 ABC中,/ C=90 ,把锐角 A的邻边与斜边比值的叫做/A 的余弦,记作cosA= 3,正切:在ABC中,/C=90 ,把锐角 A的对边与邻边的比值叫做/A的正切,记作12门人=三角函数第21 页共24 页00 30 45 60 90 si
20、n a01cosa10tan a 01 不存在 cot q 不 存在10二、.特殊值的三角函数:asinacosatana30 45 160 三、仰角、俯角、坡度.仰角:视线在水平线上方的角;.俯角:视线在水平线下方的角。.坡度(坡比):坡面的铅直高度和水平宽度的比叫做坡度 (坡比)。用字母表示,即。把坡面与水平面的夹角记作(叫做坡角),那么。四、各锐角三角函数之间的关系(1)互余关系sinA=cos(90 A), cosA=sin(90 A)tanA=cot(90 A), cotA=tan(90 - A) (2)平方关系(3)倒数关系tanAtan(90 A)=1 (4)弦切关系tanA=五、锐角三角函数的 增减性当角度在090之间变化时,(1)正弦值随着角度的 增大(或减小)而增大(或减小)(2)余弦值随着角度的增大(或减小)而减小(或增大)(3)正切值随着角度的增大(或 减小)而增大(或减小)(4)余切值随着角度的增大(或减 小)而减小(或增大)六、解直角三角形 1 .解直角三角形的 概念:在直角三角形中,除直角外,一共有五个元素,即三条 边和两个锐角,由直角三角形中除直角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 休闲食品健康化转型对市场拓展的影响及应对策略报告
- 幸福与痛苦的文学交织试题及答案
- 工业互联网平台构建2025年异构数据库融合技术与5G通信协同发展报告
- 文学的社会责任与批判试题及答案
- 司法公正的标准与考量试题及答案
- 2025年汉语语音基础考核试题及答案
- 如何应对法学概论考试压力的试题及答案
- 2025年计算机一级WPS考试冲刺试题及答案
- 农业保险产品创新与农村金融科技应用趋势分析报告
- 提升你的Photoshop技能试题及答案大放送
- 中国现代文学思潮智慧树知到期末考试答案章节答案2024年杭州师范大学
- 《婚姻家庭辅导服务规范》
- 2024-2029年中国船舶通讯导航装备行业市场现状分析及竞争格局与投资发展研究报告
- 《未成年人保护法》知识考试题库100题(含答案)
- LY/T 1612-2023甲醛释放量检测用1 m3气候箱技术要求
- 2024年山东省高中会考数学题学业水平考试(有答案)
- 行政能力测试常识题库及答案
- 急救器械与设备的使用与维护
- 企业采购合规风险与合规风险防控
- 2023肝硬化腹水诊疗指南(完整版)
- 高血压脑出血专家共识
评论
0/150
提交评论