版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,矩形ABCD中,E为DC的中点,AD:AB:2,CP:BP1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O下列结论:EP平分CEB;PBEF;PFEF2;EFEP4AOPO其中正确的是()ABCD2下列四个命题中,真
2、命题是()A相等的圆心角所对的两条弦相等B圆既是中心对称图形也是轴对称图形C平分弦的直径一定垂直于这条弦D相切两圆的圆心距等于这两圆的半径之和3下列图案中,是轴对称图形的是( )ABCD4若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为( )A916B34C43D345上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()AB
3、CD6方程2x2x3=0的两个根为()Ax1=,x2=1Bx1=,x2=1Cx1=,x2=3Dx1=,x2=372017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是( )A1.35106B1.35105C13.5104D1351038不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征甲同学:它有4个面是三角形;乙同学:它有8条棱该模型的形状对应的立体图形可能是()A三棱柱B四棱柱C三棱锥D四棱锥9如图,在ABC中,ABAC,A30,AB的垂直平分线l交AC于点D,则CBD的度数为( )A30B45C50D75102017年,太
4、原市GDP突破三千亿元大关,达到3382亿元,经济总量比上年增长了426.58亿元,达到近三年来增量的最高水平,数据“3382亿元”用科学记数法表示为()A3382108元 B3.382108元 C338.2109元 D3.3821011元二、填空题(本大题共6个小题,每小题3分,共18分)11已知扇形AOB的半径OA=4,圆心角为90,则扇形AOB的面积为_.12已知xy=3,那么的值为_ 13如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,则_14如图,ABC中,ABBD,点D,E分别是AC,BD上的点,且ABDDCE,若BEC105,则A的度数是_15分解因式:(2a+b)2
5、(a+2b)2= 16如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成若较短的直角边BC5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若BCD的周长是30,则这个风车的外围周长是_三、解答题(共8题,共72分)17(8分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是 ;(
6、2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数18(8分)如图,在四边形ABCD中,ADBC,BABC,BD平分ABC求证:四边形ABCD是菱形;过点D作DEBD,交BC的延长线于点E,若BC5,BD8,求四边形ABED的周长19(8分)如图,在五边形ABCDE中,C100,D75,E135,AP平分EAB,BP平分ABC,求P的度数20(8分) “中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元
7、,求A、B两种型号的空调的购买价各是多少元?21(8分)在平面直角坐标系xOy中,已知两点A(0,3),B(1,0),现将线段AB绕点B按顺时针方向旋转90得到线段BC,抛物线y=ax2+bx+c经过点C(1)如图1,若抛物线经过点A和D(2,0)求点C的坐标及该抛物线解析式;在抛物线上是否存在点P,使得POB=BAO,若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a0)经过点E(2,1),点Q在抛物线上,且满足QOB=BAO,若符合条件的Q点恰好有2个,请直接写出a的取值范围22(10分)分式化简:(a-) 23(12分)如图,在
8、ABC中,ABAC,BAC90,M是BC的中点,延长AM到点D,AEAD,EAD90,CE交AB于点F,CDDF(1)CAD_度;(2)求CDF的度数;(3)用等式表示线段CD和CE之间的数量关系,并证明24如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数的图象上,将这两点分别记为A,B,另一点记为C,(1)求出的值;(2)求直线AB对应的一次函数的表达式;(3)设点C关于直线AB的对称点为D,P是轴上的一个动点,直接写出PCPD的最小值(不必说明理由)参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】由条件设AD=x,AB=2
9、x,就可以表示出CP=x,BP=x,用三角函数值可以求出EBC的度数和CEP的度数,则CEP=BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论【详解】解:设AD=x,AB=2x四边形ABCD是矩形AD=BC,CD=AB,D=C=ABC=90DCABBC=x,CD=2xCP:BP=1:2CP=x,BP=xE为DC的中点,CE=CD=x,tanCEP=,tanEBC=CEP=30,EBC=30CEB=60PEB=30CEP=PEBEP平分CEB,故正确;DCAB,CEP=F=30,F=EBP=30,F=BEF=30,EBPEFB,BEBF=EFBPF=BEF,B
10、E=BFPBEF,故正确F=30,PF=2PB=x,过点E作EGAF于G,EGF=90,EF=2EG=2xPFEF=x2x=8x22AD2=2(x)2=6x2,PFEF2AD2,故错误.在RtECP中,CEP=30,EP=2PC=xtanPAB=PAB=30APB=60AOB=90在RtAOB和RtPOB中,由勾股定理得,AO=x,PO=x4AOPO=4xx=4x2又EFEP=2xx=4x2EFEP=4AOPO故正确故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度
11、是关键2、B【解析】试题解析:A.在同圆或等圆中,相等的圆心角所对的两条弦相等,故A项错误;B. 圆既是中心对称图形也是轴对称图形,正确;C. 平分弦(不是直径)的直径一定垂直于这条弦,故C选项错误;D.外切两圆的圆心距等于这两圆的半径之和,故选项D错误.故选B.3、B【解析】根据轴对称图形的定义,逐一进行判断.【详解】A、C是中心对称图形,但不是轴对称图形;B是轴对称图形;D不是对称图形.故选B.【点睛】本题考查的是轴对称图形的定义.4、D【解析】根据一次函数的图象过原点得出一次函数式正比例函数,设一次函数的解析式为ykx,把点(3,2a)与点(8a,3)代入得出方程组2a=-3k-3=8a
12、k ,求出方程组的解即可【详解】解:设一次函数的解析式为:ykx,把点(3,2a)与点(8a,3)代入得出方程组2a=-3k-3=8ak ,由得:k=-23a,把代入得:-3=8a-23a ,解得:a=34.故选:D.【点睛】本题考查了用待定系数法求一次函数的解析式,主要考查学生运用性质进行计算的能力5、B【解析】分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;故选B点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键6、A【解析】利用因式分解法解方程即
13、可【详解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1故选A【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)7、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数
14、【详解】解:135000=1.35105故选B【点睛】此题考查科学记数法表示较大的数科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值8、D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选D考点:几何体的形状9、B【解析】试题解析:AB=AC,A=30,ABC=ACB=75,AB的垂直平分线交AC于D,AD=BD,A=ABD=30,BDC=60,CBD=1807560=45故选B10、D【解析】科学记数法的表示形式为a10n的形式,其
15、中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】3382亿=338200000000=3.3821故选:D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值二、填空题(本大题共6个小题,每小题3分,共18分)11、4【解析】根据扇形的面积公式可得:扇形AOB的面积为,故答案为4.12、2 【解析】分析:先化简,再分同正或同负两种情况作答详解:因为xy=3,所以x、y同号,于是原式=
16、,当x0,y0时,原式=2;当x0,y0时,原式=2故原式=2.点睛:本题考查的是二次根式的化简求值,能够正确的判断出化简过程中被开方数底数的符号是解答此题的关键.13、【解析】试题分析:四边形ABCD与四边形EFGH位似,位似中心点是点O,则 故答案为点睛:本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键14、85【解析】设A=BDA=x,ABD=ECD=y,构建方程组即可解决问题【详解】解:BABD,ABDA,设ABDAx,ABDECDy,则有,解得x85,故答案为85【点睛】本题考查等腰三角形的性质,三角形的外角的性质,三角形的内角和定理等知识,解题
17、的关键是熟练掌握基本知识,属于中考常考题型15、3(a+b)(ab)【解析】(2a+b)2(a+2b)2=4a2+4ab+b2-(a2+4ab+4b2)= 4a2+4ab+b2-a2-4ab-4b2=3a2-3b2=3(a2-b2)=3(a+b)(a-b)16、71【解析】分析:由题意ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个详解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则x2=4y2+52,BCD的周长是30,x+2y+5=30则x=13,y=1这个风车的外围周长是:4(x+y)=419=71故答案是:71点睛
18、:本题考查了勾股定理在实际情况中的应用,注意隐含的已知条件来解答此类题三、解答题(共8题,共72分)17、(1)100;(2)作图见解析;(3)1【解析】试题分析:(1)根据百分比= 计算即可;(2)求出“打球”和“其他”的人数,画出条形图即可;(3)用样本估计总体的思想解决问题即可.试题解析:(1)本次抽样调查中的样本容量=3030%=100,故答案为100;(2)其他有10010%=10人,打球有100302010=40人,条形图如图所示:(3)估计该校课余兴趣爱好为“打球”的学生人数为200040%=1人18、(1)详见解析;(2)1.【解析】(1)根据平行线的性质得到ADBCBD,根据
19、角平分线定义得到ABDCBD,等量代换得到ADBABD,根据等腰三角形的判定定理得到ADAB,根据菱形的判定即可得到结论;(2)由垂直的定义得到BDE90,等量代换得到CDEE,根据等腰三角形的判定得到CDCEBC,根据勾股定理得到DE6,于是得到结论【详解】(1)证明:ADBC,ADBCBD,BD平分ABC,ABDCBD,ADBABD,ADAB,BABC,ADBC,四边形ABCD是平行四边形,BABC,四边形ABCD是菱形;(2)解:DEBD,BDE90,DBC+EBDC+CDE90,CBCD,DBCBDC,CDEE,CDCEBC,BE2BC10,BD8,DE6,四边形ABCD是菱形,ADA
20、BBC5,四边形ABED的周长AD+AB+BE+DE1【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键19、65【解析】EAB+ABC+C+D+E=(5-2)180=540,C=100,D=75,E=135,EAB+ABC=540-C-D-E=230.AP平分EAB,PAB=12EAB.同理可得,ABP=ABC.P+PAB+PBA=180,P=180-PAB-PBA=180-EAB-ABC=180-(EAB+ABC)=180-230=65.20、A、B两种型号的空调购买价分别为2120元、2320元【解析】试题分析:根据题意
21、,设出A、B两种型号的空调购买价分别为x元、y元,然后根据“已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,列出方程求解即可.试题解析:设A、B两种型号的空调购买价分别为x元、y元,依题意得:解得:答:A、B两种型号的空调购买价分别为2120元、2320元21、(1)y=x2+x+3;P( ,)或P( ,);(2) a1;【解析】(1)先判断出AOBGBC,得出点C坐标,进而用待定系数法即可得出结论;分两种情况,利用平行线(对称)和直线和抛物线的交点坐标的求法,即可得出结论;(2)同(1)的方法,借助图象即可得出结论【详解】(1)
22、如图2,A(1,3),B(1,1),OA=3,OB=1,由旋转知,ABC=91,AB=CB,ABO+CBE=91,过点C作CGOB于G,CBG+BCG=91,ABO=BCG,AOBGBC,CG=OB=1,BG=OA=3,OG=OB+BG=4C(4,1),抛物线经过点A(1,3),和D(2,1),抛物线解析式为y=x2+x+3;由知,AOBEBC,BAO=CBF,POB=BAO,POB=CBF,如图1,OPBC,B(1,1),C(4,1),直线BC的解析式为y=x,直线OP的解析式为y=x,抛物线解析式为y=x2+x+3;联立解得,或(舍)P(,);在直线OP上取一点M(3,1),点M的对称点M
23、(3,1),直线OP的解析式为y=x,抛物线解析式为y=x2+x+3;联立解得,或(舍),P(,);(2)同(1)的方法,如图3,抛物线y=ax2+bx+c经过点C(4,1),E(2,1),抛物线y=ax26ax+8a+1,令y=1,ax26ax+8a+1=1,x1x2=符合条件的Q点恰好有2个,方程ax26ax+8a+1=1有一个正根和一个负根或一个正根和1,x1x2=1,a1,8a+11,a,即:a1【点睛】本题是二次函数综合题,考查了待定系数法,全等三角形的判定和性质,平行线的性质,对称的性质,解题的关键是求出直线和抛物线的交点坐标.22、a-b【解析】利用分式的基本性质化简即可.【详解】.【点睛】此题考查了分式的化简,用到的知识点是分式的基本性质、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 子宫肉瘤患者的口腔护理
- 小儿惊厥护理中的沟通与协调
- 护理伦理与医疗安全
- 大丰市小海中学高二生物三同步课程讲义第讲期中期末串讲之种群和群落
- 《信息通信建设数字化工程监理服务能力评价标准》征求意见稿
- 太阳能建筑一体化原理与应 课件 第5章 太阳能集热器
- 2025年中国奢侈品行业市场研究报告
- DB32∕T 5212-2025 泵站远程集控少人值守技术规范
- 2026 年中职掘进技术(巷道掘进)试题及答案
- 党建试题及答案多选
- 咖啡店5s管理制度
- 供电营业规则(2024版)
- T/SSBME 1-2024医疗器械上市后研究和风险管控计划编写指南
- 钢筋棚拆除合同范本
- 断绝亲子协议书
- 【MOOC答案】《光纤光学》(华中科技大学)章节作业期末慕课答案
- 小学生班级管理交流课件
- DB21T 3722.7-2025高标准农田建设指南 第7部分:高标准农田工程施工质量评定规范
- 近八年宁夏中考数学试卷真题及答案2024
- 超星尔雅学习通《带您走进西藏(西藏民族大学)》2025章节测试附答案
- 超星尔雅学习通《科学计算与MATLAB语言(中南大学)》2025章节测试附答案
评论
0/150
提交评论