八年级数学上册第三章《位置与坐标》教案_第1页
八年级数学上册第三章《位置与坐标》教案_第2页
八年级数学上册第三章《位置与坐标》教案_第3页
八年级数学上册第三章《位置与坐标》教案_第4页
八年级数学上册第三章《位置与坐标》教案_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第三章位置与坐标9/ n*,/ wivc教学目标知识写搦哥.认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位 置、由点的位置写出它的坐标.在实际问题中,能建立适当的直角坐标系,描述物体的位置,体会可以用直角坐标 系画一个简单图形.能结合具体情境灵活运用多种方式确定物体的位置.在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称 图形的顶点坐标,并知道对应顶点坐标之间的关系.过程窃知|经历探索图形位置变化与图形坐标变化之间关系的过程,进一步发展数形结合意识 和应用意识,初步建立几何直观.从事对现实世界中确定位置的现象进行观察、分析、抽象和概括的活动,进一步

2、发展空间观念.彳教材分析一、标准要求.探索并理解平面直角坐标系及其应用.在研究确定物体位置等过程中,进一步发展空间观念;经历借助图形思考问题的 过程,初步建立几何直观.结合实例进一步体会用有序数对表示物体的位置 .理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能 根据坐标描出点的位置、由点的位置写出它的坐标 .在实际问题中,能建立适当的直角坐标系,描述物体的位置.对给定的正方形,会选择合适的直角坐标系,写出它的顶点坐标,体会用坐标刻画 一个简单图形.在平面上,能用方位角和距离刻画两个物体的相对位置.在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称

3、图形的顶点坐标,并知道对应顶点坐标之间的关系.二、教材分析“图形与坐标”是“图形与几何”领域的重要组成部分 ,它是发展学生空间观念的 重要载体.作为第一、二学段“图形与位置”的发展,本章是第三学段“图形与坐标”的 主体内容,将引领学生感受确定物体位置方法的多样性,抽象出平面直角坐标系的概念, 进而利用平面直角坐标系确定物体的位置,并从坐标的角度描述学习过的轴对称图形, 进一步认识轴对称.同时,平面直角坐标系是表示变量之间关系的重要工具 ,因此本章是 以后学习“一次函数”的重要基础.本章首先结合学生的生活实际,选择了丰富多彩、形式多样的确定位置的现实背景 力图使学生感受平面上确定位置的共同特征:

4、不管用什么方法确定位置,都需要两个数 据.然后,通过实际背景认识确定位置的一个常用方法,引入平面直角坐标系,建立直角 坐标系中的点与坐标之间的一一对应关系,学习根据坐标描出点的位置、由点的位置写 出它的坐标,同时能建立适当的直角坐标系刻画图形上各点的位置 .最后,在同一个直角 坐标系里,探索图形的变化(轴对称)与坐标的变化之间的关系.V教学重难点【重点】.确定物体位置的方法.认识和画出直角坐标系,在给定的直角坐标系中,能够根据坐标描出点的位置,由 点的位置写出它的坐标.探索坐标变换与图形变换的关系.【难点】.灵活运用各种方法确定物体的位置.认识图形与坐标的关系.正确确定坐标变换与图形变换的关系

5、,进一步发展空间观念和审美意识. 教学建议.结合实际创造性地选用现实题材进行教学.教学中要立足于学生的生活经验和已有的数学活动经验,创造性地选用现实生活中 的有关题材,丰富教学内容,生活中,确定位置的方法是多样的,有点定位、区域定位、极 坐标定位、直角坐标定位等.教科书从学生熟悉的情境出发,选取了 “电影院中找座位”“航海中找目标” “地图上确定城市的位置”等素材,教学中教师既可以利用教科书上 已有的题材,也可以根据本地的生活实际和学生的认知实际,选取更为贴近学生的教学 素材(如确定学校的位置、校园中旗杆的位置、学生在班级的位置等 ),鼓励学生用自己 的方式来确定位置.恰当把握教学重点与要求.

6、教学中应让学生充分经历确定物体位置的活动过程,在过程中体会到:不管用什么 方法来确定一个物体在平面上的位置,都需要两个数据.要引导学生理解轴对称与坐标 变化之间的联系,形成对图形变换的整体认识,进一步发展学生的数形结合意识、空间观念,建立几何直观.恰当运用多种教学手段.本章的教学需要大量的坐标纸、地图等材料,课前的准备是必需的.同时,建议有条 件的地区使用计算机进行动态演示,以保证教学的效果.课时划分1确定位置11课时2平面直角坐标系3课时3轴对称与坐标变化1课时回顾与思考1课时 11确定位置WI 格平汉上华)教字目标 知识写技-能、|.要求学生在现实情境中感受物体定位的多种方法.初步学会根据

7、实际情况找出具体的位置.能较灵活地运用不同的方式对物体定位.能了解在平面上确定物体位置的方法的统一性:都需要两个数据. 过程.通过现实事例,让学生了解到位置的重要性,引导学生进入新课.使学生置身情境中,研究物体的位置,对位置形成初步的认识.引导学生探索确定物体位置的方法.通过讨论交流等方式给学生讲解例题,掌握确定物体位置的方法.让学生经历探索、操作等过程,在实践中体会和掌握如何运用各种方法来确定物 体的位置.通过课后练习、讨论交流等方式组织学生小结本课,回忆和巩固知识. 帽蹒度身价闻疆.通过现实生活中的有关题材,使学生体会生活中位置的确定离不开数据,数学与 生活有着密切关系.使学生在合作与交流

8、的过程中获得情感体验,培养学生的合作意识.难忘U.【重点】.使学生能在具体的情境中,根据行和列确定并描述物体的位置.能了解在平面上确定物体位置的方法:一般需要两个数据.【难点】能灵活运用不同方式准确确定物体的位置.(与_数字在雷【教师准备】教材情境图,带磁力的方格板和黑白棋.布置学生收集两张废旧电影票,准备学生尺、量角器.【学生准备】按教师的布置收集两张废旧电影票,准备学生尺、量角器.11 轨子;UL 住迎新课导入导入一:过渡语同学们,你们知道秦始皇兵马俑吗?【问题】 秦始皇兵马俑在什么位置呢?你能告诉我陕西省西安市的位置吗?设计意图通过上述图片,引导学生感受生活中常常需要确定位置.导入新课:

9、怎 样确定位置呢?导入二:【问题】 在数轴上,确定一个点的位置需要几个数据呢?【答】一个,例如,若A点表示-2, B点表示3,则由-2和3就可以在数轴上找到A点和B点的位置.总结得出结论:在数轴上,确定一个点的位置一般需要一个数据.2新知构建过渡语在平面内,又如何确定一个点的位置呢?请同学们根据生活中确定位置 的实例,谈谈自己的看法.一、探究(1)在电影院内如何找到电影票上所指的位置?吧吧吧(2)在电影票上,“3排6座”与“6排3座”中的“ 6”的含义有什么不同?(3)如果将“3排6座”记作(3,6),那么“6排3座”如何表示?(5,6)表示什么含义?设计意图较好地体现数学的现实性,有利于学生

10、良好数学观的形成.(4)在只有一层的电影院内,确定一个座位一般需要几个数据?(5)在生活中,确定物体的位置还有其他的方法吗?与同伴进行交流.设计意图及时总结学生的经验,并要求学生自主寻找生活中的定位问题,进而 可以选用学生所举的例子开展下面的教学活动,这样的课才是生动的,交互的.结论:生活中常常用“排数”和“座数”来确定位置.二、学有所用下表中是无序排列的汉字,小明拿到一张写有密码的字条,你能帮他破译吗?】谩奉;以酎夫叫嘴提水、支结论:生活中常常用“行数”和“列数”来确定位置三、例题讲解下图是某次海战中敌我双方舰艇对峙示意图(图中1 cm表示20 n mile).对我方潜艇O来说:(1)北偏东

11、40。的方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?距离我方潜艇20 n mile的敌舰有哪几艘?(3)要确定每艘敌舰的位置,各需要几个数据?设计意图本例用方位角和距离刻画两个物体的相对位置,实际上,这就是极坐 标定位.当然,这里并不严格地介绍极坐标,而是意在渗透极坐标的思想.解:(1)对我方潜艇来说,北偏东40的方向上有两个目标:敌月B和小岛.要想确定敌舰B的位置,仅用北偏东40。的方向是不够的,还需要知道敌舰B距我方 潜艇的距离.(2)距我方潜艇20 n mile的敌舰有两艘:敌舰A和敌舰C.(3)要确定每艘敌舰的位置,各需要两个数据:距离和方位角.例如,对我方潜艇来说 敌舰A

12、在正南方向,距离为20 n mile处;敌舰B在北偏东40的方向,距离为28 n mile 处;敌舰C在正东方向,距离为20 n mile处.结论:生活中常常用“方位角”和“距离”来确定位置 .四、做一做(1)据新华社报道,2008年5月12日14:28,我国四川省发生里氏8. 0级强烈地震, 震中位于阿坝州汶川县境内,即北纬31。,东经103.4。.这是新中国成立以来破坏性最 强、波及范围最大的一次地震.你能在图中找到震中的大致位置吗?设计意图这是根据经纬度来确定位置的.结论:生活中常常用“经度”和“纬度”来确定位置.(2)如图所示的是广州市地图简图的一部分,如何向同伴介绍“广州起义烈士陵园

13、” 所在的区域? “广州火车站”呢?I -甩设计意图这种确定位置的方法属于区域定位.生活中没有绝对的点,为了寻找 点的方便,常将点框定在一定的区域内.结论:生活中常常用“区域定位”来确定位置.五、议一议(1)你能举出生活中需要确定位置的例子吗?与同伴进行交流.(2)在平面内,确定一个物体的位置一般需要几个数据?结论:在平面内,确定一个物体的位置一般需要2个数据.若设这两个数据分别为a和b,则:a表示:排数、行数、经度、方位b表示:座数、列数、纬度、距离知识拓展确定平面上的点的方法很多,不管采用哪种方法,平面内确定位置都 需要两个量,特别是用一对数表示位置时,应该注意数是有顺序的.顺序不同表示点

14、的位 置就不同.包课堂小结.在现实情境中感受了确定物体位置的多种方式,并能灵活运用不同方式确定物体 的位置.在数轴上,确定一个点的位置一般需要一个数据.在平面内,确定一个物体的位置一般需要两个数据.若设这两个数据分别为a和b,则:a表示:排数、行数、经度、方位b表示:座数、列数、纬度、距离 P检测反馈.在平面内,下列数据不能确定物体位置的是()人3楼5号B.北偏西40C解放路30号D东经120 ,北纬30解析:在平面中,确定物体的位置一般需要两个数据,B选项只有一个数据,故不能确 定物体的位置.故选B.海事救灾船前去救援某海域失火轮船,需要确定()A方位角B.距离C失火轮船的国籍D.方位角和距

15、离解析:在海上确定物体的位置一般需要方位角和距离.故选D.如图所示,“马”所处的位置为(2,3),其中“马”走的规则是沿着“日”字形的 对角线走.(1)用坐标表示图中“象”的位置是 ;(2)写出“马”下一步可以到达的所有位置,并在图中标出.解析:(1)结合图形写出即可.(2)根据网格结构找出与“马”现在的位置成“日”字 的点,然后写出即可.解:(1)(5,3) 如图所示,(1,1),(3,1),(4,2),(4,4),(1,5),(3,5).-I I 1/1X1 1 IK板书设计1确定位置.在平面内,确定一个点的位置一般需要两个数据.生活中常见的几种确定位置的方式.(1)用“排数”和“座数”.

16、(2)用“行数”和“列数”.(3)用“经度”和“纬度”.(4)用“方位”和“距离”.(5)用区域定位.J6布置作业一、教材作业【必做题】教材第56页随堂练习.【选做题】教材第57页习题3. 1第3,4题.二、课后作业【基础巩固】.下列说法:数轴上的每一个点的位置都可以用一个数来确定;平面内任何一个点的位置都可以用一个数来确定;若用两个数表示平面内一个点的位置,则(2,3)和(3,2)表示的是同一个点的位置.其中正确的有()A.0个 B.1个 C.2个 D.3个.如图所示的是某学校的平面示意图,如果用(2,5)表示校门的位置,那么图书馆的位置如何表示?图中(10,5)表示哪个地点的位置? , _

17、.0 1 2 3S 6 7 R 9。1112314【能力提升】.小明家在学校的北偏东30方向,距学校1000 m处,则学校在小明家的什么位置? 【拓展探究】.如图所示,一只甲虫在10X 10的网格(每一格边长为1)上沿着网格线运动,它从C处出 发想去看望A,B, D E处的其他甲虫,规定其行动为:向下向左走为正,向上向右走为负,如 果从C到B记为:C-B(+5,+2)(第一个数表示左、右方向,第二个数表示上、下方向).(1) C-D), C-A), A(+5, -6), E-D(,-4);若这只甲虫的行走路线是 C-A-BE,请计算该甲虫走过的路程;(3)这只甲虫去P点处的行走路线为(-2,+

18、2) 一(+3, -4) 一(-4,+2) 一(+7,+3),请在图上标出P点的位置,想一想,有没有简便的计算方法?【答案与解析】1.B(解析:只有正确.).解:图书馆的位置表示为(2,9).图中(10,5)表示旗杆的位置.解:南偏西30方向,距小明家1000 m处.解:(1)(+2,+4)(+7,-2) A +5 (2)由题意可知:甲虫所走过的路程为7+2+4+2+2+3+4+5=29 (3)标点P的位置略.简便的计算方法为:左、右方 向:(-2)+(+3)+( -4)+(+7)=4,上、下方向:(+2)+( -4)+(+2)+(+3)=3,由此可知自点 C处出 发,向左走4格,向下走3格就

19、到P点处.士 轨于乂必()成切N处本节内容与现实生活联系紧密,学生在生活中经常能遇到相关的知识,因此在教学 时建议尽量让学生参与进来.学生在亲身体验中学习知识,加深印象,并培养认真的学习 态度.在教学中要让学生有条理地思考和表达.在确定位置的活动中,学生不仅自己要明 白物体的位置,而且要能有条理地向别人表述.这种表达可以反映学生的表达水平、有关 知识的掌握程度和空间观念.2)小足N处在确定位置的方法中渗透了 “极坐标”的思想,只要学生能直观地理解就行,不需要 深入理解此概念.(4)冉我设计可以让学生多注意生活中需要确定位置的地方,发现身边的公共设施或广告中定位 不清的问题.让他们在生活中学习,

20、并明白知识源于生活的道理.* 钗忆刁您畔廿随堂练习(教材第56页).解:答案不唯一.如:青年之家餐厅在A1区;水阁云天在B1区;工人疗养院在C2区.解:(1)按照图中的表示数字,“将”在第9行第5列,“帅”在第1行第5列.(2)第 7行第4歹九习题3. 1(教材第57页).解:先确定北京等四个城市的位置,估计它们的经纬度.然后按照要求,在经度线或纬 度线上寻找符合要求的城市.解:(1) “经五纬一”在广播大厦旁边的十字路口 .从“经七纬五”出发,经过“经六纬五”到达“经五纬一”的路线不唯一.例如,“经 七纬五” “经六纬五” “经五纬五” “经五纬三”到达“经五纬一”或“经七纬五”“经六纬五”

21、 “经六纬三” “经六纬一”到达“经五纬一”.(3) “华美达广场”位于“经六路”与“纬三路”的十字路口附近.一 前环巩得s知识解篌平面内确定物体的位置时应注意:(1)用行列定位法表示平面内某点的位置必须有两个数据,缺一不可.(2)经纬定位法既适合在球面上定位,也适合在平面上定位,利用地理学上的经纬度 来确定物体的位置的定位方法,指明一点的经度和纬度就可以确定物体在地球上的位 置.(3)弄清区域定位法中字母及数字分别表示的含义,依照已知建筑物的表示方法表 示建筑物的位置.(4)用直角坐标系定位法确定一个物体的位置也需要两个数据,一个是横坐标,另一 个是纵坐标,两者缺一不可(下节课讲).(5)用

22、一对数表示位置时要注意这对数是有顺序的,一般先写横格所表示的数,再写 竖格所表示的数(简称“先横后纵”). 经典例题如图所示,李老师家在2街与2巷的十字路口附近,如果用(2,2) 一(2,3) 一一(3,4) 一(4,4) 一(5,4)表示李老师从家到学校上班的一条路径,请你用同样的方 式写出由家到学校的另外一种路径.”】街2街 3街 4街5街6街解:答案不唯一,如:(2,2) 一(3,2) 一(4,2) 一(5,2) 一(5,3) 一(5,4)2平面直角坐标系(七)数字目标知识写技能.理解平面直角坐标系的有关概念,并能正确画出平面直角坐标系.能建立适当的坐标系,描述物体的位置.在给定的直角坐

23、标系中,会根据坐标描出点的位置,由点的位置写出它的坐标.过程司制.通过两个找点、连线、观察、确定图形的大致形状的问题,使学生能在给定的直角坐标系中根据坐标描出点的位置,进一步掌握平面直角坐标系的基本内容.通过讨论交流的方式讲解例题.学生掌握根据已知条件建立适当的坐标系来描述 物体位置的方法.培养学生发现问题和主动探索的能力.在与同伴的合作交流中,培养学生的责任 心.培养学生细致、认真的学习习惯.通过教学,向学生渗透“数形结合”的数学思想,并培养学生将实际问题抽象为“数 学模型”的能力.广)数学重难点【重点】.能正确画出平面直角坐标系.能在平面直角坐标系中,根据坐标找出点,由点求出坐标.【难点】

24、.理解平面内的点与有序数又t之间的一一对应关系.在直角坐标系中,根据坐标找出点,由点求出坐标.第LLI课时/窿件底士|(,)数字目标F知识写技-能.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念 .认识并能画出平面直角坐标系.能在给定的直角坐标系中,由点的位置写出它的坐标.P过.从现实情境入手,感受建立平面直角坐标系的必要性,然后抽象出平面直角坐标 系的相关概念.通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识.M百蹒度写侪3殖由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实生活 的密切联系,让学生认识数学与生活的密切联系和对人类历史发展的作用,提高

25、学生参 加数学学习活动的积极性和好奇心.广)孜字事难忘【重点】 学生能正确画出平面直角坐标系,并能在平面直角坐标系中,根据定义写 出给定点的坐标,以及根据坐标描出点的位置.【难点】理解坐标和平面上的点的一一对应的关系,体会数形结合思想.(4)我字准备【教师准备】多媒体课件,画图工具,教材图3 - 4,3 - 5,3 - 6的情境图.【学生准备】 画图工具,方格纸.w 秋千;et住H新课导入导入一:同学们,你们喜欢旅游吗?假如你到了某一个城市旅游,那么你应怎样确定旅游景 点的位置呢?下面给出一张某市旅游景点的示意图,在科技大学的小亮如何给来访的朋友介绍该 市的几个风景点的位置呢?尽可能给出简洁的

26、表示方法,并与同伴交流.大成殿:;中心广场:;碑林:.设计意图试图通过介绍景点回顾前一节中确定位置的方法,体会不同的介绍方 法中的共性一般需要两个数据.导入二:过渡语同学们,结合以前学过的知识,请根据示意图,回答问题.你是怎样确定各个景点的位置的?x FT-UL AP _ _ z处理方式学生口答完成,对于回答不完整的由学生补充改正!教师引导性地进 行语言说明,在数轴上我们能够用一个数字来表示点的坐标,那么平面内能否用一个数 来表示景点的具体的位置呢?既复习了旧知识,又为下面用类比的方法学习新知识做铺 垫.此处学生回答的方法多种多样,只要合理即可,还有没有更好的方法,进而提出问题.感受建立平面直

27、角坐标系的必要性.设计意图通过播放图片,调动学生的热情,既复习回顾了旧知识,又激发起进一 步学习的兴趣,吸引学生的注意力,用类比的方法学习平面直角坐标系,为学习新知识进 行铺垫.引导学生猜想、探索,鼓励学生积极思考,调动学习积极性,并在活动中培养学生 的探究、合作、交流的能力.区1新知构建过渡语生活中到处都是确定物体位置的问题,谁能用学过的知识完成下面的做 一做呢?一、做一做(一)(1)小红在旅游示意图上画上了方格,标上数字,如图(1)所示,并用(0,0)表示科技 大学的位置,用(5,7)表示中心广场的位置,那么钟楼的位置如何表示?(2,5)表示哪个地 点的位置?(5,2)呢?.科丁天.=1内

28、_ I 相a字 R/i【ill0 2 3 t 5 6 7 8 9L011(1)(2)按照小红的方法,(5,2)中的2表示,(2,5)中的2表示.(2)如果小亮和他的朋友在中心广场,并以中心广场为“原点”,做了如图(2)所示的 标记,那么你能表示“碑林”的位置吗? “大成殿”的位置呢?(通常将(0,0)点称为原点)过渡语在上一节课,我们已经学习了许多确定位置的方法,对于这个问题,大家 看用哪种方法比较合适?如果城市比较大,地图还需要向右上方扩展,你能类似地表示右上部分其他点的位 置吗?设计意图以方格纸为背景,可以方便地利用有序数对描述各景点的位置.生活 中用两个距离表示位置时,一般不用负数,而直

29、角坐标系中的坐标是可正可负的,为此, 设计了本问题.二、相关概念思路一:给出定义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴和y轴统称坐标轴,它们的 公共原点。称为直角坐标系的原点.如伊所示,对于平面内,壬意一点 P,过点P分别向x轴、y轴作垂线,垂足在x轴、 y轴上对应的激a, b分别陶做点P的横坐标、纵坐标,有序数对(a, b)叫做点P的坐,一 。标.如图所示,在平面直角坐标系中,两条坐标轴的,4平面分成了四部分,右上方的部 分叫做第

30、一象限,其他三部分按逆时稣方网次叫做第二:象限象限第三象限和第四象限.坐 标轴上的点不在任何一个象限内.思路活动内容1:认识平面直角坐标系.过渡语请同学们打开教材第59页,结合自学提纲阅读课本例1之前的部分内 容,并将重点内容标注出来.(多媒体展示)问题1什么是平面直角坐标系?简称什么?两条数轴如何放置?如何称呼?方向如何确定?它 们的交点叫什么?问题2坐标轴将平面分为哪几个部分?它们的名称分别是什么?坐标轴上的点属于哪个部 分?问题3在方格纸上画出平面直角坐标系.问题4象限是怎样划分的?处理方式给学生58分钟的时间先结合自学提纲自学课本,然后根据自己的理 解在方格纸上画出平面直角坐标系,并标

31、出各部分名称.学生之间相互提问解答.最后找 学生代表发言,教师要求学生尽量不看课本,对于问题1和问题2,学生根据课本内容回 答应该问题不大,但是此处教师应该补充正方向的确定不是唯一的,我们为了习惯,通常 取向右与向上的方向分别为两条数轴的正方向.对于数轴的名称,多找几位学生回答,最 后教师强调画平面直角坐标系应注意:两条数轴互相垂直;原点重合;标注两坐标 轴名称;单位长度一般取相同的.问题3直接要求学生在所画平面直角坐标系中标出各 个象限的名称,并引导学生得出坐标轴上的点不在任何一个象限内.(多媒体出示,同时给学生1分钟时间改正反思,查找错误的原因) i注意:坐标轴上的点不属于任何象限,原点既

32、在横轴上又在纵轴上.在上图建立的平面直角坐标系中,两条坐标轴将坐标平面分成四个部分(按逆时针 方向)分别叫第一象限、第二象限、第三象限、第四象限.设计意图平面直角坐标系的产生是法国数学家迪卡尔的伟大发现 ,里边涉及的 概念很难引导学生自己得出,因此可以通过自学的方式让学生掌握这些知识,培养学生 自学能力、合作交流能力,体现学生主动学习的理念,对学生进行数学文化方面的熏陶和 理想教育.培养作图能力和对概念的进一步认识,强化理解.活动内容2:点的坐标的定义.(多媒体出示)问题1直角坐标系内,如何根据点的位置确定点的坐标?写出A点的坐标(如图(1)所示).问题2在平面直角坐标系内,如何根据点的坐标确

33、定点的位置?找出坐标为(2,4)的C点(如 图(2)所示).处理方式给学生34分钟的时间自学课本,然后根据自己的理解,写出A点的坐 标,然后同桌比较写出的答案是否一样.找出不同的原因,然后再一次自学课本,小组内 讨论得出正确答案:A(3,4).教师引导学生说明怎样得到点 A的坐标,例如:过点A分别 向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,我们说A 点的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A的坐标,记作A(3,4).用直角三 角板中的直角,使直角顶点落在点A上,并且保证两条直角边与坐标系中x轴和y轴垂直, 一条直角边通过x轴上的坐标是3,另一条直角边

34、通过y轴上的坐标是4,所以点A的坐 标记作A(3,4).这些方法都可以得到点的坐标,此处学生容易出现错误,教师强调有序数 对的横坐标在前,纵坐标在后,教师可以引导学生编顺口溜,利于学生理解辨别(平面直 角坐标系,两条数轴来唱戏,一个点,两个数,先横后纵再括号,中间隔开用逗号).然后教 师在平面直角坐标系中画出B点,要求学生写出点B的坐标,并板书在黑板上,学生讲评 更正.对于问题2如何根据坐标找到平面上的点,学生独立思考,在方格纸上已经画好的 平面直角坐标系中找出点C(2,4),组内探索交流后回答,并在黑板上演示,教师强调坐标 要写在点旁边,书写格式要正确.(多媒体出示,同时给学生2分钟时间查缺

35、补漏,查找错误的原因)(L)设计意图以上两个问题的解决,是本节课的核心环节,教师的讲解配以多媒体 的直观演示,能更好地突破难点,将枯燥的知识趣味化,同时,采用独立、对学、小组合作 学习等多种形式相结合的学习方式,提高学生的学习兴趣,并及时地做练习,让学生将知 识转化成自身的技能,注意到自己独立做题时所出现的错误,从而更好地实现本节课的 教学目标.过渡语请同学们利用上面的知识,探究下面的例题. 三、例题讲解(教材例1)写出图中的多边形ABCDEF个顶点的坐标.I IV I IQ I I |解:各个顶点的坐标分别是:A(-2,0), B(0, -3), C(3, -3), D(4,0), E(3,

36、3), F(0,3).设计意图本课时的重点是通过坐标更好地理解平面直角坐标系的思想,认识到 坐标与点的一一对应关系.例1和下面的“做一做”分别让学生“根据点的位置写出它 的坐标” “根据坐标描出相应的点”,在此基础上进一步感受坐标与点的对应关系. 四、做一做(二)(1)在下图所示的平面直角坐标系中,描出下列各点:A(-5,0), B(1,4), C(3,3), 口1,0), E(3, -3), F(1, -4).(2)依次连接A B C, D, E F, A你得到什么图形?(3)在平面直角坐标系中,点与实数对之间有何关系?【问题解决】(1)图略.(2)图形像“飞机”.(3)在直角坐标系中,对于

37、平面上的任意一点,都有唯一的一对有序实数对(即点的 坐标)与它对应;反过来,对于任意一对有序实数对,都有平面上唯一的一点与它对应.设计意图第(3)问是建立在例1和“做一做”前两问的基础上的,让学生经历根 据坐标描出点的位置,由点的位置写出它的坐标的过程,体会平面上的点与有序实数对 之间是一一对应的关系.结论:在直角坐标系中,对于平面上的任意一点,都有唯一的一对有序实数对(即点 的坐标)与它对应;反过来,对于任意一对有序实数对,都有平面上唯一的一点与它对应.知识拓展由于平面直角坐标系中的点是用一个有序实数对来表示的 ,所以平面 上的点和有序实数对是一一对应的关系.点(a, b)( aw b)与点

38、(b, a) 一股是不同的两个点 在描点时应注意.13课堂小结在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.通常两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴 的正方向.水平的数轴叫做x轴或横轴.铅直的数轴叫做y轴或纵轴.x轴和y轴统称坐标 轴.它们的公共原点。称为直角坐标系的原点.如图所示,两坐标轴把平面分成四个部分, 右上方的部分叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限 和第四象限.4检测反馈.如果P点的坐标为(-1,2),那么P点的横坐标为,纵坐标为 解析:点的横坐标写在前,纵坐标写在后,用小括号括起来.答案:-1 2.如果Q点

39、的坐标为(2, -3),那么Q点的横坐标为,纵坐标为 解析:点的横坐标写在前,纵坐标写在后,用小括号括起来.答案:2 -3.如果M点的横坐标为-2,纵坐标为-1,那么M点的坐标为. 解析:点的横坐标写在前,纵坐标写在后,用小括号括起来.故填(-2,-1).如图所示,分别写出点A B, C D E, F, G的坐标.解:A(-1,-1), B(0, -3), C(2, -5), D(4, -1), E(3,2), F(-2,3), 2, -2).15板书设计第1课时.做一做(一).相关概念.例题讲解.做一做(二).6布置作业、教材作业【必做题】教材第61页习题3.2第1,2题.【选做题】教材第6

40、1页习题3. 2第3,4题.二、课后作业【基础巩固】.在平面直角坐标系中,点P(-2,3)在 ()A第一象限B第二象限C第三象限D.第四象限.点P(2,3)的横坐标为,纵坐标是.【能力提升】.点P(0, - 3)的位置是在 ()Ax轴的正方向上Bx轴的负方向上Cy轴的正方向上Dy轴的负方向上.已知P(3, -2),贝U P点到x轴的距离为,至ij y轴的距离为.已知A点在x轴上,且OA=3,则A点的坐标为.已知A(-1,4), B(-4,4),则线段AB的长为.【拓展研究】.在图中的直角坐标系中描出下列各点.A(2,3), B(-2,3), C(0, -4), D(-2,0), E(-3,-1

41、), F(3, -2).【答案与解析】B(解析:由象限的定义可知点P(-2,3)在第二象限.故选B)2 3D(解析:横坐标为0,在y轴上,纵坐标为负数,在负半轴上.)2 3(解析:点到x轴的距离为纵坐标的绝对值,到y轴的距离为横坐标的绝对值.)(3,0)或(-3,0)(解析:A点在x轴上,OA=3,则A点在。点的左侧或右侧,所以A点的坐 标有两个.)3(解析:根据A(-1,4), B(-4,4)得AB平行于x轴,线段AB的长为A, B两点横坐标差的 绝对值.)解:根据点的坐标描出即可.图略.有及子乂必()成切N处本节课是在上一节的基础之上引入平面直角坐标系的概念,探究点和有序实数对的 关系,学

42、生在观察中总结出点的坐标与点在坐标系中的位置的关系,得出在直角坐标系中,对于平面上的任意一点,都有唯一的一对有序实数对(即点的坐标)与它对应;反过来, 对于任意一对有序实数对,都有平面上唯一的一点与它对应.总之,结论的得出都是以问 题为载体,通过学生观察、思考得出来的规律性的知识.2)小足N处由于平面直角坐标系是新概念,学生掌握起来有一定的难度,练习不够多,难免有学 生掌握不好.在解决问题时,不少学生还有无从下手的感觉.(与内我设计适当增加练习,照顾各个层次的学生的需要.在时间允许的情况下,对平面直角坐标 系在其他方面的应用加以扩充.士 钗牝刁磔畔廿随堂练习(教材第60页)解:(1)教学楼(2

43、,4),实验楼(3, -3),图书馆(-3,3) .(2)图略.学生公寓在图书馆下面6格,实验楼左面6格的地方.习题3. 2(教材第61页).解:B(0,5), A(5,2), E(3, -4), D(-3,-4), q-5,2).解:(1)A(3,8), L(6,7), N(9,5), P(9,1),E(3,5) .(2)(4,7)代表 C,(5,5)代表F,(2,5)代表 D.解:答案不唯一,以大长方形的左下角的顶点为坐标原点建立坐标系:这五个儿童所在的位置坐标分别为 D(2,5), E(7,1), A(7,5), C(7,8), B(11,5).解:画图略.游乐园的坐标为(-7,2),映

44、月湖的坐标为(-4,-4),碑林的坐标为(8,1). 俞麻贝喝(4)经典例题在如图所示的平面直角坐标系中描出A(-1,0), B(5,0), C2,3), D(0,3)四点,并用线段将AB, CD四点依次连接起来,得到一个什么图形?你能求出它的面积吗?I 1 I I I I I I I I I I I解析 把A, B, CD四点描出来,再依次连接起来,得到一个梯形,根据面积公式可求得梯形的面积1解:如图所小,得到一个梯形,S梯形ABC=2X (2+6) X 3=12.I I 1 I I I I 1 I 1 I I I第2课时WJ 猱忤以上】(3我字目标知识写技能.知道在坐标轴上的点以及与坐标轴

45、平行的直线上点的坐标的特征.知道不同象限内点的坐标的特征.经历画坐标系、描点、连线、看图以及由点找坐标等过程,进一步体会平面直角坐标系中点与坐标之间的对应关系,发展数形结合意识.明程整捌.经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作交流能力.通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识.通过生动有趣的教学活动,发展学生的合情推理能力和丰富的情感、态度,提高学生学习数学的兴趣.数学事难点【重点】体会平面直角坐标系中点与坐标之间的对应关系,发展数形结合意识.【难点】认识坐标轴上的点、各象限内点的坐标特征. 教字挂备【教师准备】多媒

46、体课件.【学生准备】画图工具,方格纸若干张.w 秋千;et住国|_新课导入导入一:过渡语上节课我们学习了平面直角坐标系,请同学们在方格纸上建立一个平面 直角坐标系,在建坐标系时要注意哪些问题?生:应注意标明正方向即箭头,标明x轴和y轴,还应标明单位长度.师:在你所建的坐标系中标出象限,思考每个象限具有怎样的特点.并指出下列各点12所在象限或坐标轴:A(-1,-2. 5), B(3, -4), C z,, D(3,6), E(-2. 3,0), F 0, - ,00,0).生:A点在第三象限,B点在第四象限,C点在第二象限,D点在第一象限,点在乂轴 上,F点在y轴上,G点在坐标原点上.设计意图复

47、习回顾上节课所学的平面直角坐标系,并考察了学生对于象限内点 的坐标特点以及坐标轴上点的坐标特点的掌握情况导入二:过渡语同学们,相信你们对十字绣一定不陌生吧!你知道绣十字绣时怎样从图 纸中找到符号给十字绣画格吗?这些漂亮的十字绣蕴含哪些数学知识呢?这节课我们从数学的角度来探讨一下这个 问题.(板书课题)设计意图激趣引课,意在调动学生学习的积极性.为了更好地解决本节课的问题,请同学们思考以下问题:(多媒体出示下列问题).平面直角坐标系的定义.x轴,y轴上点的坐标的特点.平行于x轴或平行于y轴的点的坐标特点.指出下列各点所在象限或坐标轴:A(-1,-2.5), B(3, -4), q-4,5), D

48、(3,6), E( - 2.3,0), F(0,2), 00,0).若点P(x- 2, y+3)在x轴上,贝U y=;若在y轴上,贝U x=;若在原点, 贝 1 x=, y=.设计意图巩固所学知识,同时为探索新知识提供载体.12新知构建(教材例2)在直角坐标系中描出下列各点,并将各组内这些点依次用线段连接起 来.以-3,5), E(-7,3), C(1,3), D(-3,5);2) F(-6,3), -6,0), A(0,0), B(0,3).观察所描出的图形,它像什么?根据图形回答下列问题.(1)图形中哪些点在坐标轴上,它们的坐标有什么特点?(2)线段EC与x轴有什么位置关系?点E和点C的坐

49、标有什么特点?线段EC上其他 点的坐标呢?(3)点F和点G的横坐标有什么共同特点 侬段FG与y轴有怎样的位置关系?解:连接起来的图形像“房子”,如图所示.I mmm(1)线段AG上的点都在x轴上,它们的纵坐标都等于0;线段AB上的点都在y轴上, 它们的横坐标都等于0.(2)线段EC平行于x轴,点E和点C的纵坐标相同.线段EC上其他点的纵坐标也相 同,都是3.(3)点F和点G的横坐标相同,线段FG与y轴平行.设计意图本题创设了一个相对轻松、有趣的情境,使学生进一步掌握在平面直 角坐标系中由坐标找到点的位置,并让学生初步感受坐标轴上点的坐标特征,平行于x轴、 y轴的直线上点的坐标特征.【议一议】在

50、平面直角坐标系中,坐标轴上的点的坐标有什么特点?【问题解决】坐标轴上的点的坐标中至少有一个是 0,即横轴上的点的纵坐标是0,纵轴上的点的横坐标是0.【做一做】如图所示的是一个笑脸.(1)在“笑脸”上找出几个位于第一象限的点,指出它们的坐标,说说这些点的坐标 有什么特点.(2)在其他象限内分别找几个点,看看其他各个象限内的点的坐标有什么特点.(3)不描出点,分别判断A(1,2), B(-1,-3), C(2, -1), D(-3,4)所在的象限.设计意图力图引领学生探索同一象限内点的坐标的特征.【问题解决】(1)第一象限内的点的坐标有:(1,1),(1,2),(2,1),(2,2),(2,3),

51、(5,2)等,它们的横坐标与纵坐标都是正实数.(2)第二象限内的点的坐标有:(-1,1),( -1,2),( -2,1),( -2,2),( -2,3),( -5,2)等, 它们的横坐标是负实数,纵坐标是正实数.第三象限内的点的坐标有:(-1,-1),( -3,-3)等,它们的横坐标与纵坐标都是负实 数.第四象限内的点的坐标有:(1, -1),(3, -3)等,它们的横坐标是正实数,纵坐标是负 实数.(3)点A(1,2)在第一象限,点B( -1, - 3)在第三象限,点C(2, -1)在第四象限,点 D(-3,4)在第二象限.总结:各个象限内的点的坐标特征是怎样的?第一象限(+,+),第二象限

52、(-,+),第三象限(-,-),第四象限(+,-).知识拓展根据点的坐标符号的情况可以确定点的位置;反之,也可以根据点的 位置确定点的符号情况.坐标轴上的点不属于任何象限.J3课堂小结对于点P(a, b),用字母表示坐标.若点P在第一象限,则a0, b0;若点P在第二象限,则a0;若点P在第三象限,则a0,b0, b0,b0,所以Qb, a)在第二象限.故填第二 象限.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A (-4,3)B. (-3,-4)C(-3,4)D. (3, -4)解析:因为点P在第二象限内,点P至U x轴的距离是4,所以点P的纵坐标为4,又点P

53、 到y轴的距离是3,所以点P的横坐标为-3.所以点P为(-3,4).故选C.已知点P(a, b)在第三象限,且|a|二3,| b|=4,那么点P的坐标为 ()A (-4, -3) B . (-3,-4)C(-3,4)D. (3, -4)解析:因为点P(a, b)在第三象限,所以它的横、纵坐标均为负,所以a=-3,b=-4.故选 B.如图所示,在平面直角坐标系中 尸(-1,1), PQ/ y轴,线段PQ的长为3,求点Q的坐 标.解:由PQ/ y轴可知点Q在点P的正上方或正下方.当点Q在点P的正上方时,Q(-1,4);当点Q在点P的正下方时,q-1,-2).J5板书设计第2课时.教材例2.做一做J

54、6布置作业一、教材作业【必做题】教材第63页随堂练习.【选做题】教材第64页习题3. 3第3,4题.二、课后作业【基础巩固】 TOC o 1-5 h z .在平面直角坐标系中,点(-3,8)所在的象限是()A第一象限B.第二象限C第三象限D.第四象限.在平面直角坐标系中,点(0, -10)在 ()Ax轴的正半轴上Bx轴的负半轴上Cy轴的正半轴上Dy轴的负半轴上.在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A第一象限B.第二象限C第三象限D.第四象限.在如图所示的平面直角坐标系中,描出下列各组内的点,并用线段依次连接起来(-6,5),( -10,3),( -9,3),( -3,3)

55、,( -2,3),( -6,5);(-9,3),( -9,0),( -3,0),( -3,3);(3 . 5,9),(2,7),(3,7),(1,5),(2,5),(0,2),(3,2),(3,0);(3 . 5,9),(5,7),(4,7),(6,5),(5,5),(7,2),(4,2),(4,0),(3,0)观察所得的图形,你觉得它像什么?【能力提升】.若点P( n+5, m-2)在x轴上,则m=;若点Q( m+5, m-2)在y轴上,则.已知点 A(-3,2),点 B(1,4). 若CA平行于x轴,BC平行于y轴,则点C的坐标是; 若CA平行于y轴,BC平行于x轴,则点C的坐标是.已知线

56、段AB=3,AB/ x轴,若A点坐标为(-1,2),则B点坐标是.【拓展探究】.科学探测活动中,,旅餐麴猫标在如图所示的阴影区域内,则目标的坐标可能是()A (-3,300)B. (7, - 500)C (9,600)D. (-2,-800)9.已知坐标平面内点A(-2,4),如果将坐标系向左平移3个单位长度,再向上平移2个单 位长度,那么点A变化后的点A的坐标为.【答案与解析】B(解析:横坐标为负,纵坐标为正,在第二象限.)D(解析:横坐标为0,纵坐标为负,在y轴的负半轴上.)B(解析:横坐标为负,纵坐标为x2+1,恒大于等于1,在第二象限.)解:如图所示,图形像一栋“房子”,旁边还有一棵“

57、大树”.I I I I I I I I I I I I I I I I I I I I I I2 - 5(解析:点P在x轴上,纵坐标为0,即m-2=0, m=2.点Q在y轴上,横坐标为0,即 m+5=0,m=-5.)(1)(1,2) (2)( -3,4)(解析:(1) CA平行于x轴,C点的纵坐标和A点相同,BC平行于y 轴,点C的横坐标和B点相同.(2) CA平行于y轴,点C的横坐标和A点相同,BC平行于x 轴,点C的纵坐标和B点相同.)(2,2)或(-4,2)(解析:AB/ x轴,A点坐标为(-1,2),则B点纵坐标和A点相同,线段AB=3,在A左侧和右侧分别有一个点符合要求.)B(解析:

58、阴影区域在第四象限,只有点(7, -500)在第四象限.)(1,2)(解析:坐标系向左平移相当于点向右平移,坐标系向上平移相当于点向下平移, 所以本题可以看做坐标系不动,点A向右平移3个单位长度,再向下平移2个单位长度.) 皆以于乂痴(七)成切N-本课时利用平面直角坐标系,描出图形,然后寻找各个象限内的点的特征,紧跟练习, 加以巩固和提高.,gH得至:正方形EFGH请你 建立适当的坐标系,分别写出A,B, CDE, F, GH的坐标. 十 【答案与解析】D(解析:建立正确的平面直角坐标系,然后确定B, D两家的坐标.)(-2,1)(解析:由 圳”位于点(1,-2), “相”位于点(3,-2),

59、确定平面直角坐标系,冉 找到“炮”的位置,写出它的坐标.)解:(1)建立平面直角坐标系如图所示.(2)体育馆(-9,4),升旗台(-4,2),北部湾俱 乐部(-7,-1),盘龙苑小区(-5,-3),国际大酒店(0,0).4. (1,2)5.解:AAOB勺面积是5.小李的位置是如图所示的 A点.-,如:以EG所在直线为x轴,以FH所在直线为y轴,建立如图所示的坐5), B(5, -5), C(5,5),以-5,5), E(-5,0), F(0, -5), G(5,0), H(0,5).wi 以千乂而(大)成功N外例题的设计是这节课的一个亮点,通过实际的练习,学生认识到平面直角坐标系的 用途和需要

60、注意的地方,通过不同的平面直角坐标系,对同一个图形、同一个顶点用不同 坐标来表示,加强了学生的认识和理解.:)小正N处由于练习比较少,不少学生对平面直角坐标系理解不透彻,利用不够熟练.(,必再教设计设计不同的情境,让学生自己建立平面直角坐标系,写出点的坐标,然后再进一步地 练习.uj 钗n 您用千廿随堂练习(教材第66页)解:答案不唯一.可以以四角星的中心为坐标原点,以方格的横线、纵线所在的直线为横 轴和纵轴,建立直角坐标系,这样八个顶点的坐标分别表示为A(6,0), B(2,2), C(0,6), D(-2,2), E(-6,0), F(-2,-2), G;0, -6), H(2, -2).

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论