山大生物医学传感器讲义-气体传感器_第1页
山大生物医学传感器讲义-气体传感器_第2页
山大生物医学传感器讲义-气体传感器_第3页
山大生物医学传感器讲义-气体传感器_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、气体传感器气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。气体种类繁多,性质各异,因此,气体传感器种类也很多。按待检气体性质可分为:用于检测易燃易爆气体的传感器,如氢气、一氧化碳、瓦斯、汽油挥发气等;用于检测有毒气体的传感器,如氯气、硫化氢、砷烷等;用于检测工业过程气体的传感器,如炼钢炉中的氧气、热处理炉中的二氧化碳;用于检测大气污染的传感器,如形成酸雨的NOx、CH4、

2、O3,家庭污染如甲醛等。按气体传感器的结构还可分为干式和湿式两类;按传感器的输出可分为电阻式和费电阻式两类;按检测院里可分为电化学法、电气法、光学法、化学法几类。半导体气体传感器半导体气体传感器可分为电阻型和非电阻型(结型、MOSFET型、电容型)。电阻型气敏器件的原理是气体分子引起敏感材料电阻的变化;非电阻型气敏器件主要有Mos二极管和结型二极管以及场效应管(MOSFET),它利用了敏感气体会改变MOSFET开启电压的原理,其原理结构与ISFET离子敏传感器件相同。电阻型半导体气体传感器作用原理:人们已经发现SnO2、ZnO、Fe2O3、Cr2O3、MgO、NiO2等材料都存在气敏效应。用这

3、些金属氧化物制成的气敏薄膜是一种阻抗器件,气体分子和敏感膜之间能交换离子,发生还原反应,引起敏感膜电阻的变化。作为传感器还要求这种反应必须是可逆的,即为了消除气体分子还必须发生一次氧化反应。传感器内的加热器有助于氧化反应进程。SnO2薄膜气敏器件因具有良好的稳定性、能在较低的温度下工作、检验气体种类多、工艺成熟等优点,是目前的主流产品。此外,Fe2O3也是目前广泛应用和研究的材料。除了传统的SnO、SnO2和Fe2O3三大类外,目前又研究开发了一批新型材料,包括单一金属氧化物材料、复合金属氧化物材料以及混合金属氧化物材料。这些新型材料的研究和开发,大大提高了气体传感器的特性和应用范围。选择性是

4、气体传感器的关键性能。如SnO2薄膜对多种气体都敏感,如何提高SnO2气敏器件的选择性和灵敏度一直是研究的重点。主要措施有:在基体材料中加入不同的贵金属或金属氧化物催化剂,设置合适的工作温度,利用过滤设备或透气膜外过滤敏感气体。在SnO2材料内掺杂是改善传感器选择性的主要方法,添加Pt、Pd、Ir等贵金属不仅能有效地提高元件的灵敏度和响应时间,而且,催化剂不同,导致不同的吸附倾向,从而改善选择性。例如在SnO2气敏材料中掺杂贵金属Pt、Pd、Au可以提高对CH4的灵敏度,掺杂Ir可降低对CH4的灵敏度,掺杂Pt、Au提高对H2的灵敏度,掺杂Pd降低对H2的灵敏度。工作温度对传感器的灵敏度有影响

5、。器件在不同温度下对各种气体的灵敏度不同,利用这一特性可以识别气体种类。制备工艺对SnO2的气敏特性也有很大的影响。如在SnO2中添加ThO2,改变烧结温度和加热温度就可以产生不同的气敏效应。按质量计算,在SnO2中加入35的ThO2,5的Sm2在600的H2气氛中烧结,制成厚膜器件,工作温度为400。则可作为CO检测器件。工作温度在170200范围内,对H2的灵敏度曲线呈抛物线,而对CO改变工作温度则影响不大,因此,利用器件这一特性可以检测H2。而烧结温度为400制成的器件,工作温度为200时,对H2、CO的灵敏度曲线形状都近似呈直线,但对CO的灵敏度要高得多,可以制成对CO敏感的气体传感器

6、。结构及参数:SnO2电阻型气敏器件通常采用烧结工艺。以多孔SnO2陶瓷为基底材料,再添加不同的其他物质,用制陶工艺烧结而成,烧结时埋入加热电阻丝和测量电极。此外,也有用蒸发和溅射等工艺制成的薄膜器件和多层膜器件,这类器件灵敏度高,动态特性好。还有采用丝网印刷工艺制成的厚膜器件和混合膜器件,这类器件具有集成度高,组装容易,使用方便,便于批量生产的优点。电阻型气体传感器的典型结构主要由SnO2敏感元件、加热器、电极引线、底座及不锈钢网罩组成。这种传感器结构简单,使用方便,可以检测还原性气体、可燃性气体、蒸气等。电阻型气体传感器的主要特性参数有:1、固有电阻Ro和工作电阻Rs固有电阻Ro又称正常电

7、阻,表示气体传感器在正常空气条件下的阻值。工作电阻Rs表示气体传感器在一定浓度被测气体中的阻值。2、灵敏度S通常用S=RsRo表示,有时也用两种不同浓度C1、C2)检测气体中元件阻值之比来表示:S=Rs(C2)Ro(C1)。固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次子金属氧化物一半导体气体传感器。固体电解质氧气传感器原理同体电解质在高温下才

8、会有明显的导电性。氧化锆(ZrO2)是典型的气体传感器的材料。纯正的氧化锆在常温下是单斜晶结构,当温度升到1000左右时就会发生同质异晶转变,由单斜晶结构变为多晶结构,并伴随体积收缩和吸热反应,因此是不稳定结构。在ZrO2中掺入稳定剂如:碱土氧化钙CaO或稀土氧化钇Y2O3,使其成为稳定的荧石立方晶体,稳定程度与稳定剂的浓度有关。ZrO2加入稳定剂后在l800气氛下烧结,其中一部分锆离子就会被钙离子替代,生成(ZrOCaO)。由于Ca2+是正二价离子,Zr4+是正四价离子,为继续保持电中性,会在晶体内产生氧离子O2-空穴,这是(ZrOCaO)在高温下传递氧离子的原因,结果是(ZrOCaO)在300800成为氧离子的导体。但要真正能够传递氧离子还必须在固体电解质两边有不同的氧分压(氧位差),形成所渭的浓差电池。设电极两边的氧分压分别为PO2(1)、PO2(2),在两电极发生如下反应:(+)极:PO2(2),2O2-O2+4e(-)极:PO1(1),O2+4e2O2-固定PO2(1)实际上是(-)极形成一个电位固定的电极,即参比电极,有气体参比电极和共存相参比电极两种。气体参比电极可以是空气或其他混合气体,如:H2一H2O,CO一CO2也能形成固定的PO2(1)。共存相参比电极是指金属-金属氧化物、低价金属氧化物-高价金属氧化物的混合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论