复旦量子力学讲义qmchapter_第1页
复旦量子力学讲义qmchapter_第2页
复旦量子力学讲义qmchapter_第3页
复旦量子力学讲义qmchapter_第4页
复旦量子力学讲义qmchapter_第5页
已阅读5页,还剩80页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Chapter 4Path Integral Classical action and the amplitude in Quantum MechanicsIntroduction: how to quantize?Wave mechanics h Schrdinger equ.Matrix mechanics h commutator Classical Poisson bracket Q. P. B.Path integral h wave function Classical action and the amplitude in Quantum MechanicsBasic ideaI

2、nfinite orbitsDifferent orbits have different probabilities Classical action and the amplitude in Quantum MechanicsA particle starting from a certain initial state may reach the final state through different possible orbits with different probabilities Classical action and the amplitude in Quantum M

3、echanicsClassical action Classical action and the amplitude in Quantum Mechanics Classical action and the amplitude in Quantum Mechanics Classical action and the amplitude in Quantum Mechanics Classical action and the amplitude in Quantum MechanicsFree particle Classical action and the amplitude in

4、Quantum Mechanics Classical action and the amplitude in Quantum MechanicsLinear oscillator Classical action and the amplitude in Quantum Mechanics Classical action and the amplitude in Quantum Mechanics Classical action and the amplitude in Quantum Mechanics Classical action and the amplitude in Qua

5、ntum MechanicsAmplitude in quantum mechanicsAll paths, not only just one path from a to b, have contributionsThe contributions of all paths to probability amplitude are the same in module, but different in phasesThe contribution of the phase from each path is proportional to S/h, where S is the acti

6、on of the corresponding path Classical action and the amplitude in Quantum MechanicsIn summary: the quantization scheme of the path integral supposes that the probability P(a, b) of the transition is Classical action and the amplitude in Quantum Mechanics Classical action and the amplitude in Quantu

7、m Mechanicsh appears as a part of the phase factorQ.M. C.M while h 0 Classical action and the amplitude in Quantum MechanicsClassical limit: S/h 1Quickly oscillate Classical action and the amplitude in Quantum MechanicsS depends on xa, xb considerably Path integralHow to calculate K(b, a) Path integ

8、ralKey: the variable in the integration is a function This is a functional integral Path integral Path integral Path integral Path integral Path integral Path integralThe functional integration of two adjacent events Path integral Path integral Path integral Path integral Path integralFree particles

9、Additional normalization factor Path integral Path integral Path integral Path integral Path integral Path integralde Broglie relation Path integral Path integral Path integral Path integral Path integralNormalization factor Path integral Path integral Gauss integrationA type of functional integrati

10、on which can easily be calculated Gauss integration Gauss integration Gauss integration Gauss integrationConclusion: The Gauss integration only depends on the second homogeneous function of y and derivative of y Gauss integrationNormalization factor of the linear oscillator Gauss integration Gauss i

11、ntegration Gauss integrationForced oscillator situation Gauss integration Gauss integrationAny potential Gauss integration Path integral and the Schrdinger equationPath integral Schrdinger equationPath integral wave mechanics matrix mechanics Path integral and the Schrdinger equation1D free particle

12、 Path integral and the Schrdinger equation Path integral and the Schrdinger equation Path integral and the Schrdinger equation Path integral and the Schrdinger equationWith effective potential Path integral and the Schrdinger equation Path integral and the Schrdinger equation Path integral and the S

13、chrdinger equation Path integral and the Schrdinger equation Path integral and the Schrdinger equation Path integral and the Schrdinger equation3D Schrdinger equation Path integral and the Schrdinger equation Path integral and the Schrdinger equation Path integral and the Schrdinger equation Path integral and the Schrdinger equation Path integral and the Schrdinger equation The canonical form of the path integral The canonical form of the path integral The canonical form of the path integral The canonical form of t

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论