版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第2章 一元二次方程2.5 一元二次方程的应用课时1 变化率问题与销售问题1.会用一元二次方程解决有关的实际问题;(重点、难点)2.进一步培养学生化实际问题为数学问题的能力和分析问题、解决问题的能力,培养学生应用数学的意识学习目标新课导入问题:某省农作物秸秆资源巨大,但合理使用量十分有限,因此该省准备引进适用的新技术来提高秸秆的合理使用率.若今年的使用率为40%,计划后年的使用率达到90%,求这两年秸秆使用率的年平均增长率(假定该省每年产生的秸秆总量不变).今年的使用率(1+年平均增长率)=后年的使用率你能找出问题中涉及的等量关系吗?新课导入40%(1+x)=90%整理,得 (1+x)=2.2
2、5解得 x1=0.5=50%, x2=-2.5(不合题意,舍去)答:这两年秸秆使用率的年平均增长率为50%.若设这两年秸秆使用率的年平均增长率为x,请你根据等量关系,列出方程:接下来请你解出此一元二次方程x2=-2.5符合题意吗?新课讲解 知识点1 增长率问题填空:1. 前年生产1吨甲种药品的成本是5000元,随着生产技术的进步,去年生产1吨甲种药品的成本是4650 元,则下降率是 .如果保持这个下降率,则现在生产1吨甲种药品的成本是 元.探究归纳7%4324.5下降率=下降前的量-下降后的量下降前的量新课讲解2. 前年生产1吨甲种药品的成本是5000元,随着生产技术的进步,设下降率是x,则去
3、年生产1吨甲种药品的成本是 元,如果保持这个下降率,则现在生产1吨甲种药品的成本是 元.下降率x第一次降低前的量5000(1-x)第一次降低后的量5000下降率x第二次降低后的量第二次降低前的量5000(1-x)(1-x)5000(1-x)25000(1-x)5000(1-x)2新课讲解例1 前年生产1吨甲种药品的成本是5000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,试求甲种药品成本的年平均下降率是多少?解:设甲种药品的年平均下降率为x.根据题意,列方程,得5 000 ( 1x )2 = 3000,解方程,得x10.225,x21.775.根据问题的实际意义,甲种药品成
4、本的年平均下降率约为22.5.注意下降率不可为负,且不大于1.新课讲解练一练:前年生产1吨乙种药品的成本是6000元.随着生产技术的进步,现在生产1吨乙种药品的成本是3600元,试求乙种药品成本的年平均下降率?解:设乙种药品的年平均下降率为y.根据题意,列方程,得6 000 ( 1y )2 = 3 600.解方程,得y10.225,y21.775. 根据问题的实际意义,乙种药品成本的年平均下降率约为22.5.新课讲解解后反思 答:不能.绝对量:甲种药品成本的年平均下降额为(5000-3000)2=1000元,乙种药品成本的年平均下降额为(6000-3000)2=1200元,显然,乙种药品成本的
5、年平均下降额较大 问题1 药品年平均下降额大能否说年平均下降率(百分数)就大呢?新课讲解 答:不能. 能过上面的计算,甲、乙两种药品的年平均下降率相等.因此我们发现虽然绝对量相差很多,但其相对量(年平均下降率)也可能相等 问题2 从上面的绝对量的大小能否说明相对量的大小呢?也就说能否说明乙种药品成本的年平均下降率大呢?新课讲解 问题3 你能总结出有关增长率和降低率的有关数量关系吗? 类似地 这种增长率的问题在实际生活中普遍存在,有一定的模式.若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1x)n=b(其中增长取“+”,降低取“
6、”).新课讲解变式1:某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率.(精确到0.1%) 解:设原价为1个单位,每次降价的百分率为 x.根据题意,得 解这个方程,得 答:每次降价的百分率为29.3%. 新课讲解变式2:某药品两次升价,零售价升为原来的 1.2倍,已知两次升价的百分率一样,求每次升价的百分率(精确到0.1%)解,设原价为a元,每次升价的百分率为x , 根据题意,得 解这个方程,得 由于升价的百分率不可能是负数,所以 (不合题意,舍去)答:每次升价的百分率为9.5%. 新课讲解 知识点2 利用一元二次方程解决营销问题例4 某商店从厂家以每件21
7、元的价格购进一批商品.若每件商品的售价为x元,则可卖出(350-10 x)件,但物价局限定每件商品的售价不能超过进价的120.若该商店计划从这批商品中获取400元利润(不计其他成本),问需要卖出多少件商品,此时的售价是多少? 解:(售价-进价)销售量=利润.根据等量关系得(x-21)(350-10 x)=400 整理,得 x-56x+775=0解得 x1=25, x2=31.新课讲解所以x=31不合题意,应当舍去.故x=25.答:该商店需要卖出100件商品,且每件商品的售价是25元.从而卖出350-10 x=350-1025=100(件) 因为 21120%=25.2,即售价不能超过25.2元
8、,新课讲解方法归纳建立一元二次方程模型实际问题分析数量关系设未知数实际问题的解解一元二次方程一元二次方程的根检 验运用一元二次方程模型解决实际问题的步骤有哪些?新课讲解例5:百佳超市将进货单价为40元的商品按50元出售时,能卖500个,已知该商品要涨价1元,其销售量就要减少10个,为了赚8000元利润,售价应定为多少,这时应进货为多少个?分析:设商品单价为(50+x)元,则每个商品得利润(50+x)40元,因为每涨价1元,其销售会减少10,则每个涨价x元,其销售量会减少10 x个,故销售量为(50010 x)个,根据每件商品的利润件数=8000,则(50010 x) (50+x)40=8000
9、.新课讲解解:设每个商品涨价x元,则销售价为(50+x)元,销售量为(50010 x)个,则 (50010 x) (50+x)40=8000,整理得 x240 x+300=0, 解得x1=10,x2=30都符合题意.当x=10时,50+x =60,50010 x=400;当x=30时,50+x =80, 50010 x=200.答:要想赚8000元,售价为60元或80元;若售价为60元,则进贷量应为400;若售价为80元,则进贷量应为200个.新课讲解总结归纳 利润问题常见关系式基本关系:(1)利润售价_; (3)总利润_销量进价单个利润课堂小结一元二次方程的应用增长率问题a(1+x)2=b,
10、其中a为增长前的量,x为增长率,2为增长次数,b为增长后的量.降低率问题a(1-x)2=b,其中a为降低前的量,x为降低率,2为降低次数,b为降低后的量.注意1与x位置不可调换.经济利润问题当堂小练1.某厂今年一月份的总产量为500吨,三月份的总产量为720吨,平均每月增长率是x,列方程( )A.500(1+2x)=720 B.500(1+x)2=720 C.500(1+x2)=720 D.720(1+x)2=5002.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为 .B2(1+x)+2(1+x)2=8当堂小练
11、3.青山村种的水稻去年平均每公顷产7200千克,今年平均每公顷产8712千克,求水稻每公顷产量的年平均增长率.解:设水稻每公顷产量的平均增长率为x,根据题意,得 系数化为1得,直接开平方得,则答:水稻每公顷产量的年平均增长率为10%.7200(1+x)2=8712(1+x)2=1.211+x=1.1,1+x=-1.1x1=0.1,x2=-1.1,当堂小练4.新华商场销售某种冰箱,每台进价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销价每降低50元时,平均每天能多售4台.商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?分析:本题的主要
12、等量关系是:每台的销售利润平均每天销售的数量= 5000元.当堂小练解:设每台冰箱降价x元,根据题意,得 整理,得:x2 - 300 x + 22500 = 0. 解方程,得: x1 = x2 = 150. 2900 - x = 2900 - 150 = 2750. 答:每台冰箱的定价应为2750元.拓展与延伸菜农李伟种植的某蔬菜,计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;解:设平均每次下调的百分率为x, 由题意,得 5(1x)2=3.2, 解得 x1=20%,x2=1.8 (舍去)平均每次下调的百分率为20%;拓展与延伸(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年吐鲁番职业技术学院单招职业适应性考试备考题库及答案解析
- 2026年陕西能源职业技术学院单招职业适应性考试参考题库及答案解析
- 2026年九江职业技术学院单招职业适应性测试备考题库及答案解析
- 2026年滁州职业技术学院单招职业适应性考试参考题库及答案解析
- 2026年黑龙江生态工程职业学院单招职业适应性测试备考试题及答案解析
- 期末考试总结(汇编15篇)
- 2026年河南艺术职业学院单招职业适应性考试备考试题及答案解析
- 校学生会工作总结汇编15篇
- 2026年郑州商贸旅游职业学院单招职业适应性考试备考题库及答案解析
- 2026年永州职业技术学院单招职业适应性测试备考题库及答案解析
- 广东广电网络2026届秋季校园招聘185人备考题库完整答案详解
- 2025年度皮肤科工作总结及2026年工作计划
- (一诊)成都市2023级高三高中毕业班第一次诊断性检测物理试卷(含官方答案)
- 四川省2025年高职单招职业技能综合测试(中职类)汽车类试卷(含答案解析)
- 2024江苏无锡江阴高新区招聘社区专职网格员9人备考题库附答案解析
- 2025西部机场集团航空物流有限公司招聘笔试考试备考试题及答案解析
- 智能制造执行系统(MES)应用案例教程 课件全套 项目1-9 生产工序开工、报工和检验 -特殊生产情况管理
- 前庭大腺囊肿课件
- 工程签证与索赔专题分享
- 植入类器械规范化培训
- 生物样本库解决方案
评论
0/150
提交评论