2022-2023学年湖南省长沙市望城区第二中学数学九年级第一学期期末质量检测试题含解析_第1页
2022-2023学年湖南省长沙市望城区第二中学数学九年级第一学期期末质量检测试题含解析_第2页
2022-2023学年湖南省长沙市望城区第二中学数学九年级第一学期期末质量检测试题含解析_第3页
2022-2023学年湖南省长沙市望城区第二中学数学九年级第一学期期末质量检测试题含解析_第4页
2022-2023学年湖南省长沙市望城区第二中学数学九年级第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷

2、和答题卡一并交回。一、选择题(每题4分,共48分)1下列说法:四边相等的四边形一定是菱形顺次连接矩形各边中点形成的四边形一定是正方形对角线相等的四边形一定是矩形经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有个A4B3C2D12下列事件是必然事件的为( )A明天早上会下雨B任意一个三角形,它的内角和等于180C掷一枚硬币,正面朝上D打开电视机,正在播放“义乌新闻”3平行四边形四个内角的角平分线所围成的四边形是( )A平行四边形B矩形C菱形D正方形4若在实数范围内有意义,则的取值范围是( )ABCD5下列函数中,是的反比例函数的是()ABCD6如图,的半径为,圆

3、心到弦的距离为,则的长为( )ABCD7已知点 、B(1,y2)、C(3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是( )Ay1y2y3By3y2y1Cy3y1y2Dy2y10Bb0Cac0Dbc011在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()ABCD12抛物线与y轴的交点为( )ABCD二、填空题(每题4分,共24分)13已知一元二次方程2x25x+1=0的两根为m,n,则m2+n2=_14在测量旗杆高度的活动课中,某小组学生于同一时刻在阳光下对一根直立于平地的竹竿及其影长和旗杆的影长进行了测量,得到的数据如图所示,根据这些数据计算出旗杆的高度为_m

4、15如图,点A(m,2),B(5,n)在函数(k0,x0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A、B图中阴影部分的面积为8,则k的值为 16在平面直角坐标系中,将点A(3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A的坐标是_17不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是_18在直角坐标系中,点(1,2)关于原点对称点的坐标是_三、解答题(共78分)19(8分)某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可

5、售出500千克,销售单价每涨价1元,月销售量就减少10千克(1)求出月销售量y(千克)与销售单价x(元/千克)之间的函数关系式;求出月销售利润w(元)与销售单价x(元/千克)之间的函数关系式;(2)在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少元?(3)当销售单价定为多少元时,能获得最大利润?最大利润是多少元?20(8分)O为ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将ABC分成面积相等的两部分(保留作图痕迹,不写作法)(1)如图1,AC=BC;(2)如图2,直线l与O相切于点P,且lBC21(8分)计划开设以

6、下课外活动项目:A 一版画、B 一机器人、C 一航模、D 一园艺种植为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生 必须选且只能选一个项目),并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有 人;扇形统计图中,选“D一园艺种植”的学生人数所占圆心角的度数是 ;(2)请你将条形统计图补充完整;(3)若该校学生总数为 1500 人,试估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总 人数22(10分)阅读以下材料,并按要求完成相应的任务“圆材埋壁”是我国古代数学著作九章算术中的一个问题:今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯

7、道长一尺,问径几何?用现在的数学语言表达是:如图,为的直径,弦,垂足为,寸,尺,其中1尺寸,求出直径的长解题过程如下:连接,设寸,则寸尺,寸在中,即,解得,寸任务:(1)上述解题过程运用了 定理和 定理(2)若原题改为已知寸,尺,请根据上述解题思路,求直径的长(3)若继续往下锯,当锯到时,弦所对圆周角的度数为 23(10分)为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书

8、的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?24(10分)如图,已知抛物线(a0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C,且OC=OB(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90后,点A的对应点A恰好也落在此抛物线上,求点P的坐标25(12分)如图,已知AB经过圆心O ,交O于点C(1)尺规作图:在AB上方的圆弧上找一点D,使得ABD是以AB为底边的等腰三角形(保留作图痕迹);(2)在(1)的条件下,

9、若DAB=30,求证:直线BD与O相切26我们把两条中线互相垂直的三角形称为“中垂三角形”. 如图1,图2,图3中,是的中线,垂足为点,像这样的三角形均为“中垂三角形. 设. (1)如图1,当时,则_,_;(2)如图2,当时,则_,_;归纳证明(3)请观察(1)(2)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;拓展应用(4)如图4,在中,分别是的中点,且. 若,求的长.参考答案一、选择题(每题4分,共48分)1、C【详解】四边相等的四边形一定是菱形,正确;顺次连接矩形各边中点形成的四边形一定是菱形,错误;对角线相等的平行四边形才是矩形,错误;经过平行四边形对

10、角线交点的直线,一定能把平行四边形分成面积相等的两部分,正确;其中正确的有2个,故选C考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定2、B【分析】直接利用随机事件以及必然事件的定义分析得出答案【详解】解:A、明天会下雨,是随机事件,不合题意;B、任意一个三角形,它的内角和等于180,是必然事件,符合题意;C、掷一枚硬币,正面朝上,是随机事件,不合题意;D、打开电视机,正在播放“义乌新闻”,是随机事件,不合题意故选:B【点睛】此题主要考查了随机事件以及必然事件,正确掌握相关定义是解题关键3、B【解析】分析:作出图形,根据平行四边形的邻角互补以及角平分线的定义求出A

11、EB=90,同理可求F、FGH、H都是90,再根据四个角都是直角的四边形是矩形解答详解:四边形ABCD是平行四边形,BAD+ABC=180,AE、BE分别是BAD、ABC的平分线,BAE+ABE=BAD+ABC=90,FEH=90,同理可求F=90,FGH=90,H=90,四边形EFGH是矩形故选B.点睛:本题考查了矩形的判定,平行四边形的邻角互补,角平分线的定义,注意整体思想的利用4、A【解析】根据二次根式有意义的条件:被开方数0和分式有意义的条件:分母0,列出不等式,解不等式即可【详解】解:由题意可知: 解得:故选A【点睛】此题考查的是二次根式有意义的条件和分式有意义的条件,掌握二次根式有

12、意义的条件:被开方数0和分式有意义的条件:分母0是解决此题的关键5、B【分析】根据是的反比例函数的定义,逐一判断选项即可.【详解】A、是正比例函数,故本选项不符合题意B、是的反比例函数,故本选项符合题意;C、不是的反比例函数,故本选项不符合题意;D、是正比例函数,故本选项不符合题意;故选:B【点睛】本题主要考查反比例函数的定义,掌握反比例函数的形式(k0的常数),是解题的关键.6、D【分析】过点O作OCAB于C,连接OA,根据勾股定理求出AC长,根据垂径定理得出AB=2CA,代入求出即可.【详解】过点O作OCAB于C,连接OA,则OC=6,OA=10,由勾股定理得:,OCAB,OC过圆心O,A

13、B=2AC=16,故选D【点睛】本题主要考查了勾股定理和垂径定理等知识点的应用,正确作出辅助线是关键.7、D【分析】分别把各点坐标代入反比例函数y=,求出y1,y2,y1的值,再比较大小即可【详解】点A(-2,y1)、B(-1,y2)、C(1,y1)都在反比例函数y=的图象上,y1=-2,y2=-4,y1=,-4-2,y2y1y1故选D【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键8、D【分析】了解事件发生的可能性与必然事件、不可能事件、可能事件之间的关系【详解】解:A错误可能性很大的事件并非必然发生,必然发生的事件的概率

14、为1;B错误可能性很小的事件指事件发生的概率很小,不可能事件的概率为0;C错误掷一枚普通的正方体骰子,结果恰好点数“6”朝上的概率为为可能事件D正确三角形内角和是180故选:D【点睛】本题考查事件发生的可能性,注意可能性较小的事件也有可能发生;可能性很大的事也有可能不发生9、C【分析】根据的符号,可判断图像与x轴的交点情况,根据二次项系数可判断开口方向,令函数式中x0,可求图像与y轴的交点坐标,利用配方法可求图像的顶点坐标【详解】解:A、抛物线yx2+6x8中a10,则抛物线开口方向向上,故本选项不符合题意B、x0时,y8,抛物线与y轴交点坐标为(0,8),故本选项不符合题意C、6241(-8

15、)0,抛物线与x轴有两个交点,本选项符合题意D、抛物线yx2+6x8(x+3)217,则该抛物线的对称轴是直线x3,故本选项不符合题意故选:C【点睛】本题主要考查的是二次函数的开口,与y轴x轴的交点,对称轴等基本性质,掌握二次函数的基本性质是解题的关键.10、C【解析】试题解析:由函数图象可得各项的系数: 故选C.11、D【分析】根据轴对称图形的概念求解如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意故选D.

16、【点睛】本题主要考查轴对称图形的知识点确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合12、C【解析】令x=0,则y=3,抛物线与y轴的交点为(0,3)【详解】解:令x=0,则y=3,抛物线与y轴的交点为(0,3),故选:C【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键二、填空题(每题4分,共24分)13、【分析】先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可【详解】由根与系数的关系得:m+n=,mn=,m2+n2=(m+n)2-2mn=()2-2=,故答案为【点睛】本题考查了利用根与系数

17、的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化14、12【分析】根据某物体的实际高度:影长=被测物体的实际高度:被测物体的影长即可得出答案.【详解】设旗杆的高度为x m, 故答案为12【点睛】本题主要考查相似三角形的应用,掌握某物体的实际高度:影长=被测物体的实际高度:被测物体的影长是解题的关键.15、2【解析】试题分析:将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A、B,图中阴影部分的面积为8,5m=4,m=2,A(2,2),k=22=2故答案为2考点:

18、2反比例函数系数k的几何意义;2平移的性质;3综合题16、(0,0)【解析】根据坐标的平移规律解答即可【详解】将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A的坐标是(-3+3,2-2),即(0,0),故答案为(0,0)【点睛】此题主要考查坐标与图形变化-平移平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减17、【解析】分析:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率详解:袋子中共有11个小球,其中红球有6个,摸出一个球是红球的概率是,故答案为:点睛:此题主要考查了概率的求法,如果一个事件有n种可

19、能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=18、(1,2)【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),可得答案【详解】解:在直角坐标系中,点(1,2)关于原点对称点的坐标是(1,2),故答案为(1,2)【点睛】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数三、解答题(共78分)19、(1)y10 x+1000;w10 x2+1400 x40000;(2)不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)售价定为70元时会获得最大利润,最大利润是9000元【分析】

20、(1)根据题意可以得到月销售利润w(单位:元) 与售价x(单位:元/千克)之间的函数解析式;(2)根据题意可以得到方程和相应的不等式,从而可以解答本题;(3)根据(1)中的关系式化为顶点式即可解答本题【详解】解:(1)由题意可得:y500(x50)1010 x+1000;w(x40)10 x+100010 x2+1400 x40000;(2)设销售单价为a元,解得,a80,答:商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)y10 x2+1400 x4000010(x70)2+9000,当x70时,y取得最大值,此时y9000,答:当售价定

21、为70元时会获得最大利润,最大利润是9000元;【点睛】本题考查了二次函数的实际应用,掌握解二次函数的方法、二次函数的性质是解题的关键20、(1)作图见试题解析;(2)作图见试题解析【解析】试题分析:(1)过点C作直径CD,由于AC=BC,弧AC=弧BC,根据垂径定理的推理得CD垂直平分AB,所以CD将ABC分成面积相等的两部分;(2)连结PO并延长交BC于E,过点A、E作弦AD,由于直线l与O相切于点P,根据切线的性质得OPl,而lBC,则PEBC,根据垂径定理得BE=CE,所以弦AE将ABC分成面积相等的两部分试题解析:(1)如图1,直径CD为所求;(2)如图2,弦AD为所求考点:1作图复

22、杂作图;2三角形的外接圆与外心;3切线的性质;4作图题21、(1)200;72(2)60(人),图见解析(3)1050人【分析】(1)由A类有20人,所占扇形的圆心角为36,即可求得这次被调查的学生数,再用360乘以D人数占总人数的比例可得;(2)首先求得C项目对应人数,即可补全统计图;(3)总人数乘以样本中B、C人数所占比例可得【详解】(1)A类有20人,所占扇形的圆心角为36,这次被调查的学生共有:20200(人);选“D一园艺种植”的学生人数所占圆心角的度数是36072,故答案为:200、72;(2)C项目对应人数为:20020804060(人);补充如图(3)15001050(人),答

23、:估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数为1050人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小22、(1)垂径,勾股;(2)26寸;(3)或【分析】(1)由解题过程可知根据垂径定理求出AE的长,在RtOAE中根据勾股定理求出r的值,即可得到答案(2)连接OA,设OA=r寸,则OE=DE-r=25-r,再根据垂径定理求出AE的长,在RtOAE中根据勾股定理求出r的值,进而得出结论(3)当AE=OE时,AEO是等腰直角三角形,则A

24、OE=45,AOB=90,所以由圆周角定理推知弦AB所对圆周角的度数为 45或135【详解】解:(1)根据题意知,上述解题过程运用了 垂径定理和 勾股定理故答案是:垂径;勾股;(2)连接OA,设OA=r寸,则OE=DE-r=(25-r)寸ABCD,AB=1尺,AE=AB=5寸在RtOAE中,OA2=AE2+OE2,即r2=52+(25-r)2,解得r=13,CD=2r=26寸(2)ABCD,当AE=OE时,AEO是等腰直角三角形,AOE=45,AOB=2AOE=90,弦AB所对圆周角的度数为AOB=45同理,优弧AB所对圆周角的度数为135故答案是:45或135【点睛】此题考查圆的综合题,圆周

25、角定理,垂径定理,勾股定理,等腰直角三角形的判定与性质,综合性较强,解题关键在于需要我们熟练各部分的内容,要注意将所学知识贯穿起来23、(1)这两年藏书的年均增长率是20%;(2)到2018年底中外古典名著的册数占藏书总量的10%【分析】(1)根据题意可以列出相应的一元二次方程,从而可以得到这两年藏书的年均增长率; (2)根据题意可以求出这两年新增加的中外古典名著,从而可以求得到2018年底中外古典名著的册数占藏书总量的百分之几.【详解】解:(1)设这两年藏书的年均增长率是,解得,(舍去),答:这两年藏书的年均增长率是20%;(2)在这两年新增加的图书中,中外古典名著有(万册),到2018年底

26、中外古典名著的册数占藏书总量的百分比是:,答:到2018年底中外古典名著的册数占藏书总量的10%【点睛】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答,这是一道典型的增长率问题.24、(1)y=-x2-2x+3(2)(-,)(3)满足条件的点P的坐标为P(-1,1)或(-1,-2)【详解】(1)抛物线()与x轴交于点A(1,0)和点B(3,0),OB=3,OC=OB,OC=3,c=3,解得:,所求抛物线解析式为:;(2)如图2,过点E作EFx轴于点F,设E(a,)(3a0),EF=,BF=a+3,OF=a,S四边形BOCE=BFEF+(OC+EF)OF

27、=,当a=时,S四边形BOCE最大,且最大值为此时,点E坐标为(,);(3)抛物线的对称轴为x=1,点P在抛物线的对称轴上,设P(1,m),线段PA绕点P逆时针旋转90后,点A的对应点A恰好也落在此抛物线上,如图,PA=PA,APA=90,如图3,过A作AN对称轴于N,设对称轴与x轴交于点M,NPA+MPA=NAP+NPA=90,NAP=MPA,在ANP与APM中,ANP=AMP=90,NAP=MPA,PA=AP,ANPPMA,AN=PM=|m|,PN=AM=2,A(m1,m+2),代入得:,解得:m=1,m=2,P(1,1),(1,2)考点:1二次函数综合题;2二次函数的最值;3最值问题;4旋转的性质;5综合题;6压轴题25、(1)作图见解析;(2)证明见解析【分析】(1)作线段AB的垂直一部分线,交AB上方的圆弧上于点D,连接AD,BD,等腰三角形ABD即为所求作;(2)由等腰三角形的性质可求出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论