版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、深度语法分析在自然语言的应用技术创新,变革未来Outline人工智能的历史和现状简介:从感知到认知此消彼长的经验主义和理性主义钟摆深度解析(Deep Parsing)是什么?NLP 架构纵览核武器应用举例Outline: AI History人工智能的历史和现状简介:从感知到认知此消彼长的经验主义和理性主义钟摆NLP Mainstream Since 1990sCourtesy of Prof. Church: “A Pendulum Swung Too Far”/blog-362400-988692.htmlTwo Basic Approaches to NLPComplementary r
2、ather than competingHybrid: Best of both worldsBalance and configurability between precision and recallGrammar Engineering(based onsentence structure)Good for sentence levelHandles short messages wellHigh precisionFine-grained insightsEasy to debugParsing and understandingRequires deep skillsRequire
3、s scale up skillsRequires robustness skillsModerate recall (coverage)Parser development slowApproachProsConsStatistical Learning(based on keywords)Good for document-levelHigh recallRobustEasy to scaleFast development (if data available)Requires large annotationCoarse-grainedDifficult to debugFail in
4、 short messagesOnly shallow NLPNo understandingOutline: What Is Deep Parsing人工智能的历史和现状简介:从感知到认知此消彼长的经验主义和理性主义钟摆深度解析(Deep Parsing)是什么?Deep Parsing: Unstructured to StructuresWhy parsing?Limited PatternsSubtree Pattern: Data to IntelligenceSVO Paern:Barack Obama (S) Endorse (V) Hillary Clinton (O)Know
5、ledge GraphDeep Parsing: Unstructured to StructuresSubtree Pattern: Data to IntelligenceInter-Clause Paern:虽然 遗憾无所谓Linear: Innite number of sentencesStructure:Limited paernsmild senGmentData IntelligenceOutline: NLP Architectures人工智能的历史和现状简介:从感知到认知此消彼长的经验主义和理性主义钟摆深度解析(Deep Parsing)是什么?NLP 架构纵览NLP Ar
6、chitecture 1: Deep Parser as CoreCascaded FSAs break through Chomskys hierarchy walls Robust, linear, F-measure: scale up to big dataSample Deep Parse Tree (dependency)Sample Deep Parse Tree (PS flavor)NLP Architecture 2: Information ExtractionIncluding sentiment analysis (on subjective language)NLP
7、 Architecture 3: Text MiningNLP Architecture 4: Landing on ApplicationsSample Deep Parse TreeSample Deep Parse TreeOutline: NLP Applications人工智能的历史和现状简介:从感知到认知此消彼长的经验主义和理性主义钟摆深度解析(Deep Parsing)是什么?NLP 架构纵览核武器应用举例社媒舆清分析,大数据挖掘,智能搜索,对话系统 Sentiment AnalysisWhy deep parsing, not deep learning?Learning wi
8、thout parsing does not work for social media sentimentSocial media is dominated by short messagesStatistical learning breaks in short messages: no sufficient data pointsDeep parsing enables linguistic analysis for best precisionDeep parsing enables insights mining 2 magnitudes more efficientparsing-
9、supported rule has power of about 100 ngram rulesDeep learning is a great algorithm but still delinked from parsingParsers trained by deep learning are all research systemsdifficult to adapt to real life text of social media (or other genres)knowledge bottleneck: domains where labeled data are insuf
10、ficientReal life deep learning systems are mostly end-to-end, still no structuresanalysisSentiment Analysis: Bag of Words vs. ParsingKEYWORD CHALLENGEThe iPhone has never been good.The iPhone has never been this good.ASSOCIATION CHALLENGEAnother reason to switch from Visa to MasterCard I prefer Mast
11、erCard over Visa.MasterCard is way better than Visa.CLASSIFICATION CHALLENGEI had a wonderful day today. Even my instant coffee tastes great. However my Dell laptopdoesnt boot again. Maybe I should check out the MacBook. It MacBook seems so easy to use.FCionaer-sgera-ginraeidneAdnaClylassissiuficnac
12、toiovnertshu“wmhbys”-buephainndd sdeonwtinm: eonvtesr:all tone positive (3 vs 1)Instant coffee / tastes greatDell Laptop / does not bootMacbook / easy to useDeep Parsing Supports Deep SentimentsSentiment analysis has different layerssentiment classification: thumbs-up and down (or neutral)sentiment
13、association: to associate a sentiment with a topic or brand as its objectdeep sentiment insights:who has the sentiment?how intense?why?Evaluations, comparisons and contrasts;needs and wish-list;positive/negative actions (e.g. adopt / abandon);purchase intent;pros and consMost learning systems stop a
14、t 1 and sometimes at 2.All 3 can be done via deep parsing.Illustration: Real-time PollsChallenges observed:economy topicat 6:55pm;China topic at 7:30pmIllustration: Stock Market TrendsTopic: HTCData 1: Stock Market PerformanceData 2:Chinese social media (Weibo, Tianya, Facebook, Twitter)Time range:2
15、013/08 2014/08Strong correlation observedBig Data Mining: Who benefits?For businesses: social listeningConsumer in:sights: sentiments and why Brand image: trendsCompetitive research: where do we standFor consumersPurchase decision Personalized serviceFor governmentElection campaignPublic opinions on
16、 policies and social topicsOthers?Hot topics or anywhere public opinions are involved Stock market trends correlationFor consumers: Purchase DecisionFor consumers: Purchase DecisionFor consumers: Purchase DecisionIntelligent Search and ChatbotsA mixture/convergence of 3 is possibleThree types of Cha
17、tbots:Domain knowledge QA:e.g. customer service;Open domain knowledge QA:e.g. Who won Nobel Prize in 2015?Interactive chatting: e.g. just for fun (killing time);in time, for comfort (senior people); for mental health counsellingQ:questions are a subset of language, tractablefor decoding intent, asking p
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025四季度重庆市属事业单位招聘335人笔试考试参考题库及答案解析
- 2025年乌鲁木齐市水磨沟区辅警招聘考试题库附答案解析
- 神经科患者压疮预防与皮肤护理新进展
- 供电服务员招聘考试题库及答案
- 药物警戒质量管理规范考核试题及答案
- 法治思想考试试题及答案
- 2025贵州思州润峰建设投资(集团)有限公司招聘8人笔试历年参考题库附带答案详解
- 2025江苏海晟控股集团有限公司下属子公司招聘拟录用人员笔试历年参考题库附带答案详解
- 2025安徽省文化旅游投资控股集团有限公司招聘管理人员5人笔试历年参考题库附带答案详解
- 市直中学教师专场招聘140人笔试模拟试题参考答案详解
- 2025年电大《消费者权益保护法》考试题库及答案
- 2025-2026学年浙江省宁波市镇海区多校人教版五年级上册期中评估测试数学试卷【含答案】
- 痛风急性发作护理方案
- 2025年病历书写基本规范培训考核试题(+答案解析)
- 2025广东肇庆市高要区总工会招聘社会化工会工作者8人考试笔试模拟试题及答案解析
- 2025年华业钢构有限公司-企业报告(供应商版)
- 2025年商务日语写作试卷及答案
- 纪检工作管理制度汇编
- 《军用关键软硬件自主可控产品名录》(2025年v1版)
- 打击反诈宣传课件
- 2025年中国嘧霉胺行业市场分析及投资价值评估前景预测报告
评论
0/150
提交评论