版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数为偶函数,记 , ,则的大小关系为 ( )ABCD2已定义在上的函数无极值点,且对任意都有,若函数在上与
2、具有相同的单调性,则实数的取值范围为( )ABCD3用反证法证明命题“若,则”时,正确的反设为()Ax1Bx1Cx22x30Dx22x304幂函数的图象过点 ,那么的值为( )A B64C D 5将三枚骰子各掷一次,设事件为“三个点数都不相同”,事件为“至少出现一个6点”,则概率的值为( )ABCD6如图,平面ABCD平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF12A66B33C67复数(i为虚数单位)在复平面内对应的点所在象限为()A第一象限B第二象限C第三象限D第四象限8三棱锥中,为的中点,分别交,于点、,且,则三棱锥体积的最大值为( )ABCD9已知向量,若,则(
3、)A1B1C2或1D2或110已知随机变量满足P(=1)=pi,P(=0)=1pi,i=1,2.若0p1p2,则A,BC,11已知定义在上的奇函数满足,且当时,则( )A1B-1C2D-212已知集合,且,则实数的值是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设数列的前项和为,已知,则_.14的平方根是_.15过抛物线的焦点作直线与该抛物线交于两点,过其中一交点向准线作垂线,垂足为,若是面积为的等边三角形,则_16凸多面体的面数F、顶点数V和棱数E之间的关系如下表.凸多面体面数(F)顶点数(V)棱数(E)三棱柱569长方体6812五棱柱71015三棱锥446四棱锥558
4、猜想一般结论:FVE_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某工厂拟生产并销售某电子产品m万件(生产量与销售量相等),为扩大影响进行销售,促销费用x(万元)满足(其中,为正常数)已知生产该产品还需投入成本万元(不含促销费用),产品的销售价格定为元/件(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,此工厂所获利润最大?18(12分)已知函数当时,讨论的导函数在区间上零点的个数;当时,函数的图象恒在图象上方,求正整数的最大值.19(12分)如图,圆锥的展开侧面图是一个半圆,、是底面圆的两条互相垂直的直径,为母线的中点,已知
5、过与的平面与圆锥侧面的交线是以为顶点、为对称轴的抛物线的一部分(1)证明:圆锥的母线与底面所成的角为;(2)若圆锥的侧面积为,求抛物线焦点到准线的距离20(12分)设,已知函数.(I)当时,求的单调增区间;()若对于任意,函数至少有三个零点,求实数的取值范围.21(12分)已知函数f(x)=xlnx,(I)判断曲线y=f(x)在点1,f(1)处的切线与曲线y=g(x)的公共点个数;(II)若函数y=f(x)-g(x)有且仅有一个零点,求a的值;(III)若函数y=f(x)+g(x)有两个极值点x1,x2,且22(10分)已知函数(1)当时,求不等式的解集;(2)若的解集为R,求的取值范围参考答
6、案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:因为为偶函数,所以,在上单调递增,并且,因为,故选C考点:函数的单调性【思路点睛】本题考察的是比较大小相关知识点,一般比较大小我们可以采用作差法、作商法、单调性法和中间量法,本题的题设中有解析式且告诉我们为偶函数,即可求出参数的值,所以我们采用单调性法,经观察即可得到函数的单调性,然后根据可以通过函数的奇偶性转化到同一侧,进而判断出几个的大小,然后利用函数的单调性即可判断出所给几个值的大小2、A【解析】分析:易得函数是单调函数,令,则 ,(为常数),求出的单调性,从而
7、求出在的单调性,得到在恒成立,求出的范围即可详解:定义在上的函数的导函数无零点,函数是单调函数,令,则, 在恒成立,故在递增,结合题意在上递增,故在恒成立,故 在恒成立,故 ,故选A点睛:本题考查了函数的单调性问题,考查导数的应用以及转化思想,属于中档题3、C【解析】根据反证法的要求,反设时条件不变,结论设为相反,从而得到答案.【详解】命题“若,则”,要用反证法证明,则其反设需满足条件不变,结论设为相反,所以正确的反设为,故选C项.【点睛】本题考查利用反证法证明时,反设应如何写,属于简单题.4、A【解析】设幂函数的解析式为 幂函数的图象过点 .选A5、A【解析】考点:条件概率与独立事件分析:本
8、题要求条件概率,根据要求的结果等于P(AB)P(B),需要先求出AB同时发生的概率,除以B发生的概率,根据等可能事件的概率公式做出要用的概率代入算式得到结果解:P(A|B)=P(AB)P(B),P(AB)=P(B)=1-P()=1-=1-=P(A/B)=P(AB)P(B)=故选A6、C【解析】如图,以A为原点建立空间直角坐标系,则A(0,0,0),B(0,2a,0),C(0,2a,2a),G(a,a,0),F(a,0,0),AG(a,a,0),AC(0,2a,2a),BG(a,a,0),BC(0,0,2a),设平面AGC的法向量为n1(x1,y1,1),由AGn1=0ACnsinBGn1|BG
9、7、D【解析】,对应的点为,在第四象限,故选D.8、B【解析】由已知可知,是正三角形,从而,进而,是的平分线,由此能求出三棱锥体积的最大值.【详解】由题意得,所以是正三角形,分别交,于点、,,, ,是的平分线, ,以为原点,建立平面直角坐标系,如图: 设,则,整理得, 因此三棱锥体积的最大值为.故选:B【点睛】本题考查了三棱锥的体积公式,考查了学生的空间想象能力,属于中档题.9、C【解析】根据题意得到的坐标,由可得的值.【详解】由题,或,故选C【点睛】本题考查利用坐标法求向量差及根据向量垂直的数量积关系求参数10、A【解析】,故选A【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定的
10、取值情况,然后利用排列,组合与概率知识求出取各个值时的概率对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数由已知本题随机变量服从两点分布,由两点分布数学期望与方差的公式可得A正确11、B【解析】根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期为4,而由x0,1时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1【详解】是定义在R上的奇函数,且;的周期为4;时,;由
11、奇函数性质可得;时,;.故选:B.【点睛】本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.12、B【解析】根据已知,将选项代入验证即可.【详解】由,知且,经检验符合题意,所以.故选:B【点睛】本题考查集合间的关系,要注意特殊方法的应用,减少计算量,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先计算,归纳猜想【详解】由,可得,归纳猜想:故答案为【点睛】本题考查了数列通项公式的归纳猜想,意在考查学生的归纳猜想能力.14、【解析】根据得解.【详解】由得解.【点睛】本题考查虚数的概念,属
12、于基础题.15、2.【解析】分析:根据是面积为的等边三角形,算出边长,及,得出p与边长的关系详解:是面积为的等边三角形即 即p=2点晴:本题主要考察抛物线的定义及性质,在抛物线类的题目中,做题的过程中要抓住抛物线上一点到焦点的距离和到准线的距离相等的条件是做题的关键16、2【解析】根据前面几个多面体所满足的结论,即可猜想出【详解】由题知:三棱柱:,则,长方体:,则,五棱柱:,则,三棱锥:,则四棱锥:,则,通过观察可得面数、顶点数、棱数的关系为。【点睛】本题由几个特殊多面体,观察它们的面数、顶点数、棱数,归纳出一般结论,着重考查归纳推理和凸多面体的性质等知识,属于基础题。三、解答题:共70分。解
13、答应写出文字说明、证明过程或演算步骤。17、(1)(2)当时,利润最大值为17万元,当时,最大利润万元【解析】(1)利润为单价乘以产品件数减去促销费用再减去投入成本;(2)可有对勾函数的的单调性求得最大值【详解】(1),将代入 (2)令,在单减,单增当时,利润最大值为17万元当时,最大利润万元【点睛】本题考查函数的应用,解题关键是确定关系式求得函数解析式,然后通过函数解析式求得最值等18、(1)当时,在存在唯一零点;当时,在没有零点(2)【解析】(1)首先求,令,然后求,讨论当时,判断函数的单调性和端点值,判断函数是否有零点;当时,同样是判断函数的单调性,然后结合零点存在性定理,可判断函数是否
14、存在零点;(2)由,参变分离求解出在上恒成立,转化为求函数的最小值,设,利用导数判断函数的单调性,求得函数的最小值.【详解】解:(1).令,则,当时,当,单调递减,又,所以对时,此时在不存在零点.当时,当,单调递减.又因为,取,则,即.根据零点存在定理,此时在存在唯一零点.综上,当时,在存在唯一零点;当时,在没有零点.(2)由已知得在上恒成立.设,则因为时,所以,设,所以在上单调递增,又,由零点存在定理,使得,即,,且当时,单调递减;当时,单调递增.所以,又在上单调递减,而,所以,因此,正整数的最大值为.【点睛】本题第一问考查了判断函数零点个数的问题,这类问题需判断函数的单调性,再结合函数零点
15、存在性定理判断,已知函数是单调函数的前提下,需满足,才可以说明区间内存在唯一零点,但难点是有时候或不易求得,本题中,证明的过程中,用到了,以及只有时,才有,这种赋端点值是比较难的.19、(1)答案见解析(2)【解析】(1)设底面圆的半径为,圆锥的母线,因为圆锥的侧面展开图扇形弧长与圆锥的底面圆的周长相等,列出底面半径和关系式,即可证明:圆锥的母线与底面所成的角为.(2)因为圆锥的侧面积为,即可求得其母线长.由可知,可得.在平面建立坐标系,以原点,为轴正方向,设抛物线方程,代入即可求得,进而抛物线焦点到准线的距离.【详解】(1)设底面圆的半径为,圆锥的母线 圆锥的侧面展开图扇形弧长与圆锥的底面圆
16、的周长相等 可得 由题意可知:底面圆中 故: 圆锥的母线与底面所成的角为(2) 圆锥的侧面积为 可得,故: 可得中, 为的中点,可得 在平面建立坐标系,以原点,为轴正方向.如图: 设抛物线方程 代入可得根据抛物线性质可知, 抛物线焦点到准线的距离为. 抛物线焦点到准线的距离【点睛】本题考查了线面夹角和抛物线相关知识.利用解析几何思想,通过建立坐标系,写出抛物线方程,研究曲线方程来求解相关的量,着重考查了推理与运算能力,属于中档试题.20、(I);().【解析】(I)将代入函数的解析式,并将函数的解析式表示为分段函数的性质,再结合二次函数的性质得出函数的单调递增区间;()将函数的解析式去绝对值,
17、表示为分段函数的形式,并判断出该函数的单调性,结合零点存在定理判断函数的零点,得出关于与的不等式关系,利用不等式的性质求出的取值范围【详解】()当时,所以的单调增区间为.()因为,且,可知在上单调递减,在上单调递增,在上单调递减,在上单调递增.若,则在和上无零点,由的单调性及零点的存在性定理可知,至多有两个零点;故,即对任意恒成立,可知.当时,若或成立,则由的单调性及零点的存在性定理可知至多有两个零点,故,即成立,注意到,故,即对任意成立,可知,综上可知,.因为,所以.设,其顶点在,(即线段)上运动.若 ,显然存在字图与抛物线只有两个交点的情况,不符合题意,故,如图画出草图.显然 当点自点向点
18、运动时,两个图象总有,两个交点,故只需要字形图象右支与抛物线有交点即可,即有两个正根,满足,即对任意都成立,即,又,所以.【点睛】本题考查了绝对值函数单调区间的求解和函数的零点问题,利用单调性和零点存在定理是解决函数零点问题的常用方法,考查分类讨论思想和转化思想,属于难题21、(I)详见解析;(II)a=3;(III)a【解析】(I)利用导函数求出函数y=f(x)在点(1,f(1))处的切线方程,和函数y=g(x)联立后由判别式分析求解公共点个数;(II)写出函数y=f(x)-g(x)表达式,由y=0得到a=x+2x+lnx,求函数h(x)=x+(III)写出函数y=f(x)+g(x)的表达式,构造辅助函数t(x)=-x2+ax-2+xlnx,由原函数的极值点是其导函数的零点分析导函数对应方程根的情况,分离参数a后构造新的辅助函数,求函数的最小值,然后分析当a大于函数最小值的情况,进一步求出当x【详解】解:(I)由f(x)=xlnx,得f(x)=lnx+1,f(1)=1,又f(1)=0,曲线y=f(x)在点(1,f(1))处的切线方程为y=x-1,代入y=-x2+ax-2当a3时,=(1-a)当a=-1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 结合车活动策划方案(3篇)
- 气柜拆除施工方案(3篇)
- 蒸汽砖施工方案(3篇)
- 北京暖气施工方案(3篇)
- 肇源打井施工方案(3篇)
- 垂钓中心施工方案(3篇)
- 2025年企业企业信息化建设与运维实施手册
- 礼服品牌合作方案
- 2025年大学大三(眼视光医学)角膜病学阶段测试试题及答案
- 2025年中职计算机信息管理(信息管理应用)试题及答案
- 2025年输血知识考试试题及答案
- 2025-2026学年人教版八年级上册道德与法治期末试卷(含答案和解析)
- 2026贵州盐业集团秋招面笔试题及答案
- 四川省成都市天府新区2024-2025学年七上期末数学试卷(原卷版)
- 慢性病患者健康管理工作方案
- 安全防范设计评估师基础理论复习试题
- 2026年内蒙古电子信息职业技术学院单招职业适应性测试题库附答案详解
- DB53-T 1269-2024 改性磷石膏用于矿山废弃地生态修复回填技术规范
- 2025年及未来5年市场数据中国过氧化苯甲酰行业市场深度分析及发展前景预测报告
- 昆明医科大学研究生学位论文撰写要求及有关规定
- 中华人民共和国公务员法(2025年修正)
评论
0/150
提交评论