版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,若AB,则实数的取值范围是( )ABCD2若满足约束条件则的最大值为( )A10B8C5D33已知双曲线C:
2、1(a0,b0)的焦距为8,一条渐近线方程为,则C为( )ABCD4下列与函数定义域和单调性都相同的函数是( )ABCD5如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为( )ABCD6已知集合,则( )ABCD7已知命题:“关于的方程有实根”,若为真命题的充分不必要条件为,则实数的取值范围是( )ABCD8已知全集为,集合,则( )ABCD9已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为( )ABCD10若集合,则( )ABCD11已知全集,集合,则( )ABCD12阅读如图所示的程序
3、框图,运行相应的程序,则输出的结果为( )AB6CD二、填空题:本题共4小题,每小题5分,共20分。13若函数为偶函数,则 14(5分)已知函数,则不等式的解集为_15若展开式中的常数项为240,则实数的值为_.16已知向量,满足,则的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数f(x)xlnx,g(x)x2ax.(1)求函数f(x)在区间t,t1(t0)上的最小值m(t);(2)令h(x)g(x)f(x),A(x1,h(x1),B(x2,h(x2)(x1x2)是函数h(x)图像上任意两点,且满足1,求实数a的取值范围;(3)若x(0,1,
4、使f(x)成立,求实数a的最大值18(12分)如图,在四棱锥中,是等边三角形,.(1)若,求证:平面;(2)若,求二面角的正弦值19(12分)已知函数.(1)若,求证:.(2)讨论函数的极值;(3)是否存在实数,使得不等式在上恒成立?若存在,求出的最小值;若不存在,请说明理由.20(12分)已知函数(1)求单调区间和极值;(2)若存在实数,使得,求证:21(12分)已知两数(1)当时,求函数的极值点;(2)当时,若恒成立,求的最大值22(10分)已知凸边形的面积为1,边长,其内部一点到边的距离分别为.求证:.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共
5、60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】先化简,再根据,且AB求解.【题目详解】因为,又因为,且AB,所以.故选:D【答案点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.2、D【答案解析】画出可行域,将化为,通过平移即可判断出最优解,代入到目标函数,即可求出最值.【题目详解】解:由约束条件作出可行域如图,化目标函数为直线方程的斜截式,.由图可知当直线过时,直线在轴上的截距最大,有最大值为3.故选:D.【答案点睛】本题考查了线性规划问题.一般第一步画出可行域,然后将目标函数转化为 的形式,在可行域内通过平移找到最优解,将最优解带回到目标
6、函数即可求出最值.注意画可行域时,边界线的虚实问题.3、A【答案解析】由题意求得c与的值,结合隐含条件列式求得a2,b2,则答案可求.【题目详解】由题意,2c8,则c4,又,且a2+b2c2,解得a24,b212.双曲线C的方程为.故选:A.【答案点睛】本题考查双曲线的简单性质,属于基础题.4、C【答案解析】分析函数的定义域和单调性,然后对选项逐一分析函数的定义域、单调性,由此确定正确选项.【题目详解】函数的定义域为,在上为减函数.A选项,的定义域为,在上为增函数,不符合.B选项,的定义域为,不符合.C选项,的定义域为,在上为减函数,符合.D选项,的定义域为,不符合.故选:C【答案点睛】本小题
7、主要考查函数的定义域和单调性,属于基础题.5、C【答案解析】根据三视图还原为几何体,结合组合体的结构特征求解表面积.【题目详解】由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积,故选C.【答案点睛】本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养.6、A【答案解析】求得集合中函数的值域,由此求得,进而求得.【题目详解】由,得,所以,所以.故选:A【答案点睛】本小题主要考查函数值域的求法,考查集合补集、交集的概念和运算,属于基础题.
8、7、B【答案解析】命题p:,为,又为真命题的充分不必要条件为,故8、D【答案解析】对于集合,求得函数的定义域,再求得补集;对于集合,解得一元二次不等式,再由交集的定义求解即可.【题目详解】,.故选:D【答案点睛】本题考查集合的补集、交集运算,考查具体函数的定义域,考查解一元二次不等式.9、B【答案解析】计算求半径为,再计算球体积和圆锥体积,计算得到答案.【题目详解】如图所示:设球半径为,则,解得.故求体积为:,圆锥的体积:,故.故选:.【答案点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力.10、B【答案解析】根据正弦函数的性质可得集合A,由集合性质表示形式
9、即可求得,进而可知满足.【题目详解】依题意,;而,故,则.故选:B.【答案点睛】本题考查了集合关系的判断与应用,集合的包含关系与补集关系的应用,属于中档题.11、B【答案解析】直接利用集合的基本运算求解即可【题目详解】解:全集,集合,则,故选:【答案点睛】本题考查集合的基本运算,属于基础题12、D【答案解析】用列举法,通过循环过程直接得出与的值,得到时退出循环,即可求得.【题目详解】执行程序框图,可得,满足条件,满足条件,满足条件,由题意,此时应该不满足条件,退出循环,输出S的值为.故选D【答案点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的与的值是解题的关键,难度较易
10、.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】试题分析:由函数为偶函数函数为奇函数,考点:函数的奇偶性【方法点晴】本题考查导函数的奇偶性以及逻辑思维能力、等价转化能力、运算求解能力、特殊与一般思想、数形结合思想与转化思想,具有一定的综合性和灵活性,属于较难题型首先利用转化思想,将函数为偶函数转化为 函数为奇函数,然后再利用特殊与一般思想,取14、【答案解析】易知函数的定义域为,且,则是上的偶函数由于在上单调递增,而在上也单调递增,由复合函数的单调性知在上单调递增,又在上单调递增,故知在上单调递增令,知,则不等式可化为,即,可得,又,是偶函数,可得,由在上单调递增,可得,
11、则,解得,故不等式的解集为15、3【答案解析】依题意可得二项式展开式的常数项为即可得到方程,解得即可;【题目详解】解:二项式的展开式中的常数项为,解得.故答案为:【答案点睛】本题考查二项式展开式中常数项的计算,属于基础题.16、【答案解析】设,由,根据平面向量模的几何意义,可得A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,为的距离,利用数形结合求解.【题目详解】设,如图所示:因为,所以A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,则即的距离,由图可知,.故答案为:【答案点睛】本题主要考查平面向量的模及运算的几何意义,还考查了数形结合的方法,属
12、于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)m(t)(2)a22.(3)a22.【答案解析】(1)是研究在动区间上的最值问题,这类问题的研究方法就是通过讨论函数的极值点与所研究的区间的大小关系来进行求解(2)注意到函数h(x)的图像上任意不同两点A,B连线的斜率总大于1,等价于h(x1)h(x2)x1x2(x1x2)恒成立,从而构造函数F(x)h(x)x在(0,)上单调递增,进而等价于F(x)0在(0,)上恒成立来加以研究(3)用处理恒成立问题来处理有解问题,先分离变量转化为求对应函数的最值,得到a,再利用导数求函数M(x)的最大值,这要用到二次求导,才
13、可确定函数单调性,进而确定函数最值【题目详解】(1) f(x)1,x0,令f(x)0,则x1.当t1时,f(x)在t,t1上单调递增,f(x)的最小值为f(t)tlnt;当0t1时,f(x)在区间(t,1)上为减函数,在区间(1,t1)上为增函数,f(x)的最小值为f(1)1.综上,m(t)(2)h(x)x2(a1)xlnx,不妨取0 x1x2,则x1x20,则由,可得h(x1)h(x2)x1x2,变形得h(x1)x1h(x2)x2恒成立令F(x)h(x)xx2(a2)xlnx,x0,则F(x)x2(a2)xlnx在(0,)上单调递增,故F(x)2x(a2)0在(0,)上恒成立,所以2xa2在
14、(0,)上恒成立因为2x2,当且仅当x时取“”,所以a22.(3)因为f(x),所以a(x1)2x2xlnx.因为x(0,1,则x1(1,2,所以x(0,1,使得a成立令M(x),则M(x).令y2x23xlnx1,则由y0 可得x或x1(舍)当x时,y0,则函数y2x23xlnx1在上单调递减;当x时,y0,则函数y2x23xlnx1在上单调递增所以yln40,所以M(x)0在x(0,1时恒成立,所以M(x)在(0,1上单调递增所以只需aM(1),即a1.所以实数a的最大值为1.【答案点睛】本题考查了函数与导数综合问题,考查了学生综合分析,转化与划归,数学运算能力,属于难题.18、(1)详见
15、解析(2)【答案解析】(1)如图,作,交于,连接.因为,所以是的三等分点,可得.因为,所以,因为,所以,因为,所以,所以, 因为,所以,所以,因为平面,平面,所以平面.又,平面,平面,所以平面.因为,、平面,所以平面平面,所以平面.(2)因为是等边三角形,所以.又因为,所以,所以.又,平面,所以平面.因为平面,所以平面平面.在平面内作平面.以B点为坐标原点,分别以所在直线为轴,建立如图所示的空间直角坐标系,则,所以,.设为平面的法向量,则,即,令,可得.设为平面的法向量,则,即,令,可得.所以,则,所以二面角的正弦值为.19、(1)证明见解析;(2)见解析;(3)存在,1.【答案解析】(1),
16、求出单调区间,进而求出,即可证明结论;(2)对(或)是否恒成立分类讨论,若恒成立,没有极值点,若不恒成立,求出的解,即可求出结论;(3)令,可证恒成立,而,由(2)得,在为减函数,在上单调递减,在都存在,不满足,当时,设,且,只需求出在单调递增时的取值范围即可.【题目详解】(1),当时,当时,故.(2)由题知,当时,所以在上单调递减,没有极值;当时,得,当时,;当时,所以在上单调递减,在上单调递增.故在处取得极小值,无极大值.(3)不妨令,设在恒成立,在单调递增,在恒成立,所以,当时,由(2)知,当时,在上单调递减,恒成立;所以不等式在上恒成立,只能.当时,由(1)知在上单调递减,所以,不满足
17、题意.当时,设,因为,所以,即,所以在上单调递增,又,所以时,恒成立,即恒成立,故存在,使得不等式在上恒成立,此时的最小值是1.【答案点睛】本题考查导数综合应用,涉及到函数的单调性、极值最值、不等式证明,考查分类讨论思想,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.20、(1)时,函数单调递增,函数单调递减,;(2)见解析【答案解析】(1)求出函数的定义域与导函数,利用导数求函数的单调区间,即可得到函数的极值;(2)易得且,要证明,即证,即证,即对恒成立,构造函数,利用导数研究函数的单调性与最值,即可得证;【题目详解】解:(1)因为定义域为,所以,时,即在和上单调递增,当时,即函数在
18、单调递减,所以在处取得极小值,在处取得极大值;,;(2)易得,要证明,即证,即证即证对恒成立,令,则令,解得,即在上单调递增;令,解得,即在上单调递减;则在取得极小值,也就是最小值, 从而结论得证.【答案点睛】本题考查利用导数研究函数的单调性与极值,利用导数证明不等式,考查运算求解能力,考查函数与方程思想,属于中档题21、(1)唯一的极大值点1,无极小值点(2)1【答案解析】(1)求出导函数,求得的解,确定此解两侧导数值的正负,确定极值点;(2)问题可变形为恒成立,由导数求出函数的最小值,时,无最小值,因此只有,从而得出的不等关系,得出所求最大值【题目详解】解:(1)定义域为,当时,令得,当所以在上单调递增,在上单调递减,所以有唯一的极大值点,无极小值点(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年医药行业企业文化专员的面试题集与解析
- 2026年医疗器械行业财务经理的面试题目
- 2026年项目负责人的角色与职责及其常见面试题
- 2026年客户服务经理沟通技巧面试题及答案
- 2026年苏州地铁安保队长年度考核材料含答案
- 林业培训班课件
- 人教A版必修第二册高一(下)数学8.6.2 直线与平面垂直【课件】
- 杭州安全生产培训重机巷课件
- DB34-T 4201-2022 外埠入皖动物指定通道检查管理规程
- 李玥希课件教学课件
- 2026陕西省森林资源管理局局属企业招聘(55人)参考考试题库及答案解析
- 生物安全培训班课件
- 2025年南京市卫生健康委员会、南京市机关事务管理局部分事业单位公开招聘卫技人员备考题库附答案详解
- 2025年贵州省贵阳市检察院书记员考试试题及答案
- 2026年江苏医药职业学院单招职业技能测试题库及答案详解一套
- 2026届上海市六校生物高一上期末达标检测模拟试题含解析
- 2025年12月嘉兴海宁水务集团下属企业公开招聘工作人员3人笔试备考重点试题及答案解析
- 2025年卫生管理(副高)考试题库及答案
- 《战后资本主义的新变化》优教课件
- 人员罢工应急预案
- 幼儿园教师朗诵培训
评论
0/150
提交评论