




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题
2、目要求的。1设为方程的解.若,则n的值为()A1B2C3D42已知函数f(x)是定义在R上的增函数,f(x)+2f (x),f(0)=1,则不等式lnf(x)+2ln3+x的解集为( )A(一,0)B(0,+)C(一,1)D(1,+)3某校派出5名老师去海口市三所中学进行教学交流活动,每所中学至少派一名教师,则不同的分配方案有( )A80种B90种C120种D150种4如图,用6种不同的颜色把图中A,B,C,D四块区域涂色分开,若相邻区域不能涂同一种颜色,则不同涂法的种数为()A400B460C480D4965在同一平面直角坐标系中,曲线按变换后的曲线的焦点坐标为( )ABCD6设等差数列的前
3、项和为若,则A9B8C7D27已知平面向量,的夹角为,则( )A4B2CD8已知是定义域为的奇函数,满足若,则( )A50B2C0D-20189已知函数是定义在上的偶函数,并且满足,当时,则( )ABCD10已知,且,则的最大值是( )ABCD11如图阴影部分为曲边梯形,其曲线对应函数为,在长方形内随机投掷一颗黄豆,则它落在阴影部分的概率是( )ABCD12已知,则方程的实根个数为,且,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设随机变量服从正态分布,如果,则 _.14如图,在中,和分别是边和上一点,将沿折起到点位置,则该四棱锥体积的最大值为_15从四棱锥的八条棱中随
4、机选取两条,则这两条棱所在的直线为异面直线的概率是_.16下图三角形数阵为杨辉三角:按照图中排列的规律,第行()从左向右的第3个数为_(用含的多项式表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆的长轴长为4,离心率为.()求椭圆的方程;()当时,设,过作直线交椭圆于、两点,记椭圆的左顶点为,直线,的斜率分别为,且,求实数的值.18(12分)如图1,等边中,是边上的点(不与重合),过点作交于点,沿将向上折起,使得平面平面,如图2所示(1)若异面直线与垂直,确定图1中点的位置;(2)证明:无论点的位置如何,二面角的余弦值都为定值,并求出这个定值19(12
5、分)已知椭圆经过两点.(1)求椭圆的方程;(2)若直线交椭圆于两个不同的点是坐标原点,求的面积20(12分)学校某社团参加某项比赛,需用木料制作如图所示框架,框架下部是边长分别为的矩形,上部是一个半圆,要求框架围成总面积为.(1)试写出用料(即周长)关于宽的函数解析式,并求出的取值范围;(2)求用料(即周长)的最小值,并求出相应的的值.21(12分)(1)已知命题:实数满足,命题:实数满足方程表示的焦点在轴上的椭圆,且是的充分不必要条件,求实数的取值范围;(2)设命题:关于的不等式的解集是;:函数的定义域为.若是真命题,是假命题,求实数的取值范围.22(10分)已知命题实数满足(其中),命题方
6、程表示双曲线.(I)若,且为真命题,求实数的取值范围;()若是的必要不充分条件,求实数的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题意可得,令,由,可得,再根据,即可求解的值.【详解】有题意可知是方程的解,所以,令,由,所以,再根据,可得,故选B.【点睛】本题主要考查了函数的零点与方程的根的关系,以及函数的零点的判定定理的应用,其中解答中合理吧方程的根转化为函数的零点问题,利用零点的判定定理是解答的关键,着重考查了转化思想,以及推理与运算能力,属于基础题.2、A【解析】分析:先令 ,则且原不等式转化为
7、,再根据单调性得结果.详解:令 ,则因为原不等式转化为 ,所以因此选A.点睛:解函数不等式,首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.3、D【解析】不同的分配方案有(C4、C【解析】分析:本题是一个分类计数问题,只用三种颜色涂色时,有种方法,用四种颜色涂色时,有种方法,根据分类计数原理得到结果.详解:只用三种颜色涂色时,有种方法,用四种颜色涂色时,有种方法,根据分类计数原理得不同涂法的种数为120+360=480.故答案为:C.点睛:(1)本题主要考查计数原理,考查排列组合的综合应用,意在考查学生对
8、这些知识的掌握水平和分析推理能力.(2)排列组合常用的方法有一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.5、D【解析】把伸缩变换的式子变为用表示,再代入原方程即可求出结果.【详解】由 可得,将其代入可得:,即故其焦点为:.故选:D.【点睛】本题考查的是有关伸缩变换后曲线方程的求解问题,涉及到的知识点有伸缩变换规律对应点的坐标之间的关系,属于基础题6、C【解析】利用等差数列的通项公式及前项和公式,求得 和的值,即可求出【详解】由,解得,则,故选【点睛】本题主要考查等差数列的通项公式及前项和公式的应用。7、B【
9、解析】将两边平方,利用向量数量积的运算求解得出数值,然后开方得到结果.【详解】依题意.故选B.【点睛】本小题主要考查向量的数量积运算,考查向量模的坐标表示,属于基础题.8、B【解析】由题意可得,为周期为4的函数,分别求得一个周期内的函数值,计算可得所求和【详解】解:是定义域为的奇函数,可得,即有,即,进而得到,为周期为4的函数,若,可得,则,可得.故选:B【点睛】本题考查抽象函数的函数值的求和,注意运用函数的周期性,考查转化思想和运算能力,属于中档题9、D【解析】先由题得出函数的周期,再将变量调节到范围内进行求解【详解】因为,所令,则,所以可得,即,所以函数的周期为,则,又因为函数是定义在上的
10、偶函数,且当时,所以故选D【点睛】本题考查函数的基本性质,包括周期性,奇偶性,解题的关键是先求出函数的周期,属于一般题10、A【解析】根据题中条件,结合基本不等式,即可得出结果.【详解】因为,所以,;又,所以,当且仅当,即时,等号成立.故选:A【点睛】本题主要考查由基本不等式求最值,熟记基本不等式即可,属于基础题型.11、D【解析】通过定积分可求出空白部分面积,于是利用几何概型公式可得答案.【详解】由题可知长方形面积为3,而长方形空白部分面积为:,故所求概率为,故选D.【点睛】本题主要考查定积分求几何面积,几何概型的运算,难度中等.12、A【解析】由与的图象交点个数可确定;利用二项式定理可分别
11、求得和的展开式中项的系数,加和得到结果.【详解】当时,与的图象如下图所示:可知与有且仅有个交点,即的根的个数为 的展开式通项为:当,即时,展开式的项为:又本题正确选项:【点睛】本题考查利用二项式定理求解指定项的系数的问题,涉及到函数交点个数的求解;解题关键是能够将二项式配凑为展开项的形式,从而分别求解对应的系数,考查学生对于二项式定理的综合应用能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据随机变量符合正态分布和正态分布的曲线关于对称,得到一对对称区间的概率之间的关系,即可求得结果【详解】随机变量服从正态分布曲线关于直线对称故答案为【点睛】本题主要考查的知识点是正态分布
12、,解题的关键是正态分布和正态分布的曲线关于对称,属于基础题。14、【解析】根据题中条件,设,表示出四边形的面积,由题意得到平面时,四棱锥体积最大,此时,根据四棱锥的体积公式,表示出,用导数的方法求其最值即可.【详解】在中,由已知,所以设,四边形的面积为,当平面时,四棱锥体积最大,此时,且,故四棱锥体积为 , 时, ;时,,所以,当时,.故答案为【点睛】本题主要考查求几何体的体积,熟记体积公式,以及导数的方法研究函数的最值即可,属于常考题型.15、【解析】基本事件总数,这两条棱所在的直线为异面直线包含的基本事件个数,由此能求出这两条棱所在的直线为异面直线的概率【详解】解:从四棱锥的八条棱中随机选
13、取两条,基本事件总数,这两条棱所在的直线为异面直线包含的基本事件个数,则这两条棱所在的直线为异面直线的概率是故答案为:.【点睛】本题考查概率的求法.求古典概型概率时,可采用列举法将基本事件一一列出;也可结合计数原理的思想.16、【解析】按照如图排列的规律,第行()从左向右的第3个数分别为,1,3,6,10,15,21,找到规律及可求出。【详解】按照如图排列的规律,第行()从左向右的第3个数分别为,1,3,6,10,15,21,由于 , , , ,则第行()从左向右的第3个数为 。【点睛】本题考查了归纳推理的问题,关键找到规律,属于基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算
14、步骤。17、()或;()1.【解析】()根据椭圆的焦点位置的不同进行分类讨论,利用长轴长和离心率可以求出椭圆的标准方程;()由,可以确定椭圆的标准方程,过作直线可以分为二类,一类是没有斜率,一类有斜率,分别讨论,直线没有斜率时,可直接求出两点坐标,利用,可以求出点坐标,当存在斜率时,直线方程与椭圆方程联立,利用根与系数关系,结合等式,也可以求出点坐标,也就求出实数的值.【详解】(I)当时,由得,; 当时,由得,.所以椭圆C的方程为或. ()当直线l的斜率不存在时,l的方程为,则 由得两点.所以,即得(舍去)或. 直线l的斜率存在时,l的方程设为设,联立,消去y得(*),所以, 而, 化简得,即
15、,显然,所以,解得或(舍去), 对时,方程(*)的,所以,故综上得所求实数.【点睛】本题考查了椭圆的标准方程,直线与椭圆的位置关系,利用根与系数关系,结合已知等式是解题的关键,本题易忽略直线不存在斜率这种情况.18、(1)见解析;(2)【解析】(1)取中点,中点,连结,以为原点,所在直线分别为轴,建立空间直角坐标系,利用向量法能求出图1中点在靠近点的三等分点处;(2)求出平面的法向量和平面的法向量,利用向量法能证明无论点D的位置如何,二面角的余弦值都为定值【详解】解:(1)在图2中,取中点,中点,连结,以为原点,所在直线分别为轴,建立空间直角坐标系,设,则,故,异面直线与垂直,解得x(舍)或x
16、,图1中点在靠近点的三等分点处(2)证明:平面的法向量,设平面的法向量,则即,取,得,设二面角的平面角为,则为钝角,故,无论点的位置如何,二面角的余弦值都为定值【点睛】本题考查利用空间向量确定空间中点的位置以及二面角的余弦值的计算,考查运算能力求解能力和推理论证能力,是中档题19、 (I) (II) 【解析】(I)将两点坐标代入椭圆方程中,求出的值,而后求出椭圆的方程;(II)直线方程与椭圆方程联立,消去,得到一元二次方程,解这个方程,求出两点的纵坐标,设直线与轴交于点,利用S|OP|y1y2| 进行求解【详解】解:(1)由题意得: , 解得: 即轨迹E的方程为y21. (2)记A(x1,y1
17、),B(x2,y2),故可设AB的方程为xy1.由消去x得5y22y30, 所以 设直线与轴交于点S|OP|y1y2| S.【点睛】本题考查了求椭圆的标准方程及直线与椭圆的位置关系20、(1),;(2),此时【解析】(1)根据面积可得到与的关系,写出周长即可(2)根据(1)写出的,利用均值不等式求解即可.【详解】(1),由得.(2),当且仅当,即等号成立.【点睛】本题主要考查了实际问题中的函数关系,均值不等式,属于中档题.21、(1);(2)【解析】分析:(1)利用一元二次不等式的解法化简,利用椭圆的标准方程化简,由包含关系列不等式求解即可;(2)化简命题可得,化简命题可得,由为真命题,为假命
18、题,可得一真一假,分两种情况讨论,对于真假以及假真分别列不等式组,分别解不等式组,然后求并集即可求得实数的取值范围.详解:(1)由得:,即命题由表示焦点在轴上的椭圆,可得,解得,即命题.因为是的充分不必要条件,所以或解得:,实数的取值范围是. (2)解:命题为真命题时,实数的取值集合为对于命题:函数的定义域为的充要条件是恒成立.当时,不等式为,显然不成立;当时,不等式恒成立的条件是,解得所以命题为真命题时,的取值集合为由“是真命题,是假命题”,可知命题、一真一假当真假时,的取值范围是当假真时,的取值范围是综上,的取值范围是.点睛:本题主要考查根据命题真假求参数范围、一元二次不等式的解法、指数函数的性质、函数的定义域,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.22、()()【解析】()将代入不等式,并解出命题中的不等式,同时求出当命题为真命题时实数的取值范围,由条件为真命题,可知这两个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海社区考试真题及答案
- 制作大豆农田转让合同8篇
- 借款合同(附担保条款)5篇
- 【课件】氧气-2024-2025学年九年级化学人教版(2024)上册
- 基础建设工程储备设备贷款合同7篇
- 办公室卫生评比
- 私家进口车借款合同3篇
- 修建树木合同模板3篇
- 安全教育与卫生管理
- 青少年卫生保健指南
- 《世界文化遗产长城》课件
- GB/T 2982-2024工业车辆充气轮胎规格、尺寸、气压与负荷
- 妊娠合并高血压疾病护理查房
- 走进泰国-课件
- 一站到底课件
- 西安中建一局装修合同模板
- 《PLC应用技术(西门子S7-1200)第二版》全套教学课件
- 《毫米、分米的认识》课件
- 社会团体财务报表
- 2024年秋新冀教版三年级上册英语教学课件 U3L3
- 2024年江苏省苏州市中考生物试卷(含答案)
评论
0/150
提交评论