版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年高考数学模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求
2、的。1山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外.据统计,烟台苹果(把苹果近似看成球体)的直径(单位:)服从正态分布,则直径在内的概率为( )附:若,则,.A0.6826B0.8413C0.8185D0.95442已知,则的大小关系为( )ABCD3执行如图所示的程序框图,则输出的的值是( )A8B32C64D1284已知函数(,且)在区间上的值域为,则( )ABC或D或45某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )ABCD6已知向量,当时,( )ABCD7已知函数,则函数的零点所在区间为( )ABCD8已知集合,若,则(
3、 )A或B或C或D或9某几何体的三视图如图所示,则该几何体的最长棱的长为( )ABCD10已知椭圆:的左、右焦点分别为,过的直线与轴交于点,线段与交于点.若,则的方程为( )ABCD11设函数在定义城内可导,的图象如图所示,则导函数的图象可能为( )ABCD12复数满足,则复数等于()ABC2D-2二、填空题:本题共4小题,每小题5分,共20分。13设满足约束条件,则的取值范围为_.14已知抛物线的焦点为,斜率为的直线过且与抛物线交于两点,为坐标原点,若在第一象限,那么_15若,且,则的最小值是_.16已知,满足不等式组,则的取值范围为_三、解答题:共70分。解答应写出文字说明、证明过程或演算
4、步骤。17(12分)等差数列中,分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)请选择一个可能的组合,并求数列的通项公式;(2)记(1)中您选择的的前项和为,判断是否存在正整数,使得,成等比数列,若有,请求出的值;若没有,请说明理由.18(12分)若关于的方程的两根都大于2,求实数的取值范围19(12分)为了实现中华民族伟大复兴之梦,把我国建设成为富强民主文明和谐美丽的社会主义现代化强国,党和国家为劳动者开拓了宽广的创造性劳动的舞台.借此“东风”,某大型现代化农场在种植某种大棚有机无公害的蔬菜时,为创造更
5、大价值,提高亩产量,积极开展技术创新活动.该农场采用了延长光照时间和降低夜间温度两种不同方案.为比较两种方案下产量的区别,该农场选取了40间大棚(每间一亩),分成两组,每组20间进行试点.第一组采用延长光照时间的方案,第二组采用降低夜间温度的方案.同时种植该蔬菜一季,得到各间大棚产量数据信息如下图:(1)如果你是该农场的负责人,在只考虑亩产量的情况下,请根据图中的数据信息,对于下一季大棚蔬菜的种植,说出你的决策方案并说明理由;(2)已知种植该蔬菜每年固定的成本为6千元/亩.若采用延长光照时间的方案,光照设备每年的成本为0.22千元/亩;若采用夜间降温的方案,降温设备的每年成本为0.2千元/亩.
6、已知该农场共有大棚100间(每间1亩),农场种植的该蔬菜每年产出两次,且该蔬菜市场的收购均价为1千元/千斤.根据题中所给数据,用样本估计总体,请计算在两种不同的方案下,种植该蔬菜一年的平均利润;(3)农场根据以往该蔬菜的种植经验,认为一间大棚亩产量超过5.25千斤为增产明显.在进行夜间降温试点的20间大棚中随机抽取3间,记增产明显的大棚间数为,求的分布列及期望.20(12分)已知直线:(为参数),曲线(为参数)(1)设与相交于,两点,求;(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线距离的最小值21(12分)在中,内角所对的边分别
7、为,已知,且.()求角的大小;()若,求面积的取值范围.22(10分)已知函数,.(1)求的值;(2)令在上最小值为,证明:.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】根据服从的正态分布可得,将所求概率转化为,结合正态分布曲线的性质可求得结果.【题目详解】由题意,则,所以,.故果实直径在内的概率为0.8185.故选:C【答案点睛】本题考查根据正态分布求解待定区间的概率问题,考查了正态曲线的对称性,属于基础题.2、D【答案解析】由指数函数的图像与性质易得最小,利用作差法,结合
8、对数换底公式及基本不等式的性质即可比较和的大小关系,进而得解.【题目详解】根据指数函数的图像与性质可知,由对数函数的图像与性质可知,所以最小;而由对数换底公式化简可得由基本不等式可知,代入上式可得所以,综上可知,故选:D.【答案点睛】本题考查了指数式与对数式的化简变形,对数换底公式及基本不等式的简单应用,作差法比较大小,属于中档题.3、C【答案解析】根据给定的程序框图,逐次计算,结合判断条件,即可求解.【题目详解】由题意,执行上述程序框图,可得第1次循环,满足判断条件,;第2次循环,满足判断条件,;第3次循环,满足判断条件,;第4次循环,满足判断条件,;不满足判断条件,输出.故选:C.【答案点
9、睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,结合判断条件求解是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【答案解析】对a进行分类讨论,结合指数函数的单调性及值域求解.【题目详解】分析知,.讨论:当时,所以,所以;当时,所以,所以.综上,或,故选C.【答案点睛】本题主要考查指数函数的值域问题,指数函数的值域一般是利用单调性求解,侧重考查数学运算和数学抽象的核心素养.5、C【答案解析】由三视图可知,该几何体是下部是半径为2,高为1的圆柱的一半,上部为底面半径为2,高为2的圆锥的一半,所以,半圆柱的体积为,上部半圆锥的体积为,所以该几何体的体积为,故
10、应选6、A【答案解析】根据向量的坐标运算,求出,即可求解.【题目详解】,.故选:A.【答案点睛】本题考查向量的坐标运算、诱导公式、二倍角公式、同角间的三角函数关系,属于中档题.7、A【答案解析】首先求得时,的取值范围.然后求得时,的单调性和零点,令,根据“时,的取值范围”得到,利用零点存在性定理,求得函数的零点所在区间.【题目详解】当时,.当时,为增函数,且,则是唯一零点.由于“当时,.”,所以令,得,因为,所以函数的零点所在区间为.故选:A【答案点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.8、B【答案解
11、析】因为,所以,所以或.若,则,满足.若,解得或.若,则,满足.若,显然不成立,综上或,选B.9、D【答案解析】先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.【题目详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知: , 所以,所以,所以该几何体的最长棱的长为故选:D【答案点睛】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.10、D【答案解析】由题可得,所以,又,所以,得,故可得椭圆的方程.【题目详解】由题可得,所以,又,所以,得,所以椭圆的方程为.故选:D【答案点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.11、D【答案解析
12、】根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象.【题目详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函数可得在上恒成立,故排除C.故选:D.【答案点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.12、B【答案解析】通过复数的模以及复数的代数形式混合运算,化简求解即可.【题目详解】复数满足,故选B.【答案点睛】本题主要考查复数的基本运算,复数模长的概念,属于基础题二、填空题:本题共4小题,每小题5分
13、,共20分。13、【答案解析】由题意画出可行域,转化目标函数为,数形结合即可得到的最值,即可得解.【题目详解】由题意画出可行域,如图:转化目标函数为,通过平移直线,数形结合可知:当直线过点A时,直线截距最大,z最小;当直线过点C时,直线截距最小,z最大.由可得,由可得,当直线过点时,;当直线过点时,所以.故答案为:.【答案点睛】本题考查了简单的线性规划,考查了数形结合思想,属于基础题.14、2【答案解析】如图所示,先证明,再利用抛物线的定义和相似得到.【题目详解】由题得,.因为.所以,过点A、B分别作准线的垂线,垂足分别为M,N,过点B作于点E,设|BF|=m,|AF|=n,则|BN|=m,|
14、AM|=n,所以|AE|=n-m,因为,所以|AB|=3(n-m),所以3(n-m)=n+m,所以.所以.故答案为:2【答案点睛】本题主要考查直线和抛物线的位置关系,考查抛物线的定义,意在考查学生对这些知识的理解掌握水平.15、8【答案解析】利用的代换,将写成,然后根据基本不等式求解最小值.【题目详解】因为(即 取等号),所以最小值为.【答案点睛】已知,求解( )的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.16、【答案解析】画出不等式组表示的平面区域如下图中阴影部分所示,易知在点处取得最小值,即,所以由图可知的取值范围为三、解答题:共70分。解答应写出文字说明、
15、证明过程或演算步骤。17、(1)见解析,或;(2)存在,.【答案解析】(1)满足题意有两种组合:,分别计算即可;(2)由(1)分别讨论两种情况,假设存在正整数,使得,成等比数列,即,解方程是否存在正整数解即可.【题目详解】(1)由题意可知:有两种组合满足条件:,此时等差数列,所以其通项公式为.,此时等差数列,所以其通项公式为.(2)若选择,.则.若,成等比数列,则,即,整理,得,即,此方程无正整数解,故不存在正整数,使,成等比数列.若选则,则,若,成等比数列,则,即,整理得,因为为正整数,所以.故存在正整数,使,成等比数列.【答案点睛】本题考查等差数列的通项公式及前n项和,涉及到等比数列的性质
16、,是一道中档题.18、【答案解析】先令,根据题中条件得到,求解,即可得出结果.【题目详解】因为关于的方程的两根都大于2,令所以有,解得,所以.【答案点睛】本题主要考查一元二次方程根的分布问题,熟记二次函数的特征即可,属于常考题型.19、(1)见解析;(2)(i)该农场若采用延长光照时间的方法,预计每年的利润为426千元;(ii)若采用降低夜间温度的方法,预计每年的利润为424千元;(3)分布列见解析,.【答案解析】(1)估计第一组数据平均数和第二组数据平均数来选择.(2)对于两种方法,先计算出每亩平均产量,再算农场一年的利润.(3)估计频率分布直方图可知,增产明显的大棚间数为5间,由题意可知,
17、的可能取值有0,1,2,3,再算出相应的概率,写出分布列,再求期望.【题目详解】(1)第一组数据平均数为千斤/亩,第二组数据平均数为千斤/亩,可知第一组方法较好,所以采用延长光照时间的方法;(2)(i)对于采用延长光照时间的方法:每亩平均产量为千斤.该农场一年的利润为千元.(ii)对于采用降低夜间温度的方法:每亩平均产量为千斤,该农场一年的利润为千元.因此,该农场若采用延长光照时间的方法,预计每年的利润为426千元;若采用降低夜间温度的方法,预计每年的利润为424千元.(3)由图可知,增产明显的大棚间数为5间,由题意可知,的可能取值有0,1,2,3,;.所以的分布列为0123所以.【答案点睛】
18、本题主要考查样本估计总体和离散型随机变量的分布列,还考查了数据处理和运算求解的能力,属于中档题.20、(1);(2)【答案解析】(1)将直线和曲线化为普通方程,联立直线和曲线,可得交点坐标,可得的值;(2)可得曲线的参数方程,利用点到直线的距离公式结合三角形的最值可得答案.【题目详解】解:(1)直线的普通方程为,的普通方程联立方程组,解得与的交点为,则(2)曲线的参数方程为(为参数),故点的坐标为,从而点到直线的距离是,由此当时,取得最小值,且最小值为【答案点睛】本题主要考查参数方程与普通方程的转化及参数方程的基本性质、点到直线的距离公式等,属于中档题.21、();()【答案解析】()根据,利用二倍角公式得到,再由辅助角公式得到,然后根据正弦函数的性质求解.()根据()由余弦定理得到,再利用重要不等式得到,然后由求解.【题目详解】()因为,所以,或,或,因为,所以所以;()由余弦定理得: ,所以,所以,当且仅当取等号,又因为,所以,所以【答案点睛】本题主要考查二倍角公式,辅助角公式以及余弦定理,还考查了运算求解的能力,属于中档题.22、 (1);(2)见解析【答案解析】(1)将转化为对任意恒成立,令,故只需,即可求出的值; (2)由(1)知,可得,令,可证,使得,从而可确定在上单调递减,在上单调递增,进而可得,即,即可证出【题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年浙江省杭州市急救中心公开招聘编外工作人员7人备考题库附答案详解
- 2025年光泽县县属国有企业专岗招聘退役军人备考题库完整参考答案详解
- 2025年中国冶金地质总局中南局(公司)专业技术人才社会招聘备考题库及参考答案详解一套
- 2025年九江市融资担保集团有限公司招聘备考题库及答案详解一套
- 2025年郴州市第四人民医院公开招聘(引进)高层次专业技术人才24人备考题库附答案详解
- 2025年自贡市沿滩区科技和经济信息化局编外人员招聘备考题库及答案详解1套
- 2025年喀喇沁旗公开招聘基层医疗卫生机构专业技术人员备考题库及1套完整答案详解
- 2025年大连理工大学力学与航空航天学院科研助理招聘备考题库有答案详解
- 东莞仲裁委员会2026年校园招聘备考题库及答案详解一套
- 2025年珠江水产研究所观赏渔业研究室项目岗招聘备考题库及一套答案详解
- 产品质量控制与检验标准流程
- 医用耗材培训
- 《感冒中医治疗》课件
- SalesContract英文销售合同模板(2025年)
- 药剂学第9版课件:第一章-绪论
- 2022 年广东省公务员录用考试《申论》真题(县级卷)及答案解析
- DB33T768.5-2024安全技术防范系统建设技术规范 第5部分- 公共供水场所
- 工程项目管理试题及答案
- 医疗器械采购投标方案(技术方案)
- 脊柱微创并发症
- 个体工商户入股协议书
评论
0/150
提交评论