火力发电厂节能降耗策略课件_第1页
火力发电厂节能降耗策略课件_第2页
火力发电厂节能降耗策略课件_第3页
火力发电厂节能降耗策略课件_第4页
火力发电厂节能降耗策略课件_第5页
已阅读5页,还剩88页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022/9/251火电厂节能降耗策略 2022/9/241火电厂节能降耗策略 2022/9/252讲座的目的希望帮助理清思路:电厂的能耗状况能耗存在的问题所在问题的解决途径2022/9/242讲座的目的希望帮助理清思路:2022/9/253讲座的内容影响经济性的因素提高经济性的途径国产300MW汽轮机组节能降耗锅炉及燃烧系统经济性控制参数降 低 厂 用 电运行优化与性能诊断2022/9/243讲座的内容影响经济性的因素2022/9/254 1 降低煤耗率2 降低厂用电率电厂节能降耗的目的2022/9/244 1 降低煤耗率电厂节能降耗2022/9/255 供电煤耗率 原煤耗率 标准煤耗率 k

2、g/(kW.h) kg/(kW.h) 2022/9/245 供电煤耗率 原煤耗率 标准煤耗率 2022/9/256发电煤耗率 原煤耗率 标准煤耗率 kg/(kW.h) kg/(kW.h) 2022/9/246发电煤耗率 原煤耗率 标准煤耗率 kg2022/9/257生产厂用电率 式中 发电厂用电量,kW.h 发电量,kW.h 2022/9/247生产厂用电率 式中 发电厂用电2022/9/258发电热效率 kJ/(kW.h) 2022/9/248发电热效率 kJ/(kW.h) 2022/9/259影响经济性的因素2022/9/249影响经济性的因素2022/9/2510影响汽轮机热效率的因素1

3、1高压缸效率2中压缸效率3低压缸效率4主蒸汽压力5主蒸汽温度6再热蒸汽温度7再热蒸汽压损8最终给水温度9凝汽器压力10再热器减温水流量11锅炉吹灰蒸汽流量12小汽轮机进汽流量2022/9/2410影响汽轮机热效率的因素11高压缸效率22022/9/2511影响汽轮机热效率的因素213机组补水率14调节阀运行法是及开度15给水泵焓升16凝结水泵焓升17轴封漏汽量18加热器给水端差19加热器疏水端差20凝汽器端差21凝汽器过冷度22阀门内漏23设备散热损失242022/9/2411影响汽轮机热效率的因素213机组补水率2022/9/2512影响锅炉热效率的因素1过量空气系数(O2)2排烟温度3飞灰

4、可燃物4入炉煤热值5石子煤量2022/9/2412影响锅炉热效率的因素1过量空气系数(O2022/9/2513汽轮机缸效率对热耗的影响2022/9/2413汽轮机缸效率对热耗的影响2022/9/2514主蒸汽压力对热耗率的影响2022/9/2414主蒸汽压力对热耗率的影响2022/9/2515主蒸汽温度对热耗率的影响2022/9/2415主蒸汽温度对热耗率的影响2022/9/2516再热压损对热耗率的影响2022/9/2416再热压损对热耗率的影响2022/9/2517再热汽温度对热耗率的影响2022/9/2417再热汽温度对热耗率的影响2022/9/2518排汽压力对热耗率的影响2022/9

5、/2418排汽压力对热耗率的影响2022/9/2519再热减温水流量对热耗率的影响2022/9/2419再热减温水流量对热耗率的影响2022/9/2520小机进汽流量对热耗率的影响2022/9/2420小机进汽流量对热耗率的影响2022/9/2521最终给水温度对热耗率的影响2022/9/2421最终给水温度对热耗率的影响2022/9/2522再热喷水量对热耗率的影响2022/9/2422再热喷水量对热耗率的影响2022/9/2523系统补水率对热耗率的影响2022/9/2423系统补水率对热耗率的影响2022/9/2524调节阀开度对热耗率的影响2022/9/2424调节阀开度对热耗率的影响

6、2022/9/2525A厂300MW亚临界机组运行参数偏离设计值引起的能耗差项目参数变化量影响煤耗(g/kwh)设计8月实际值影响煤耗(g/kwh)主汽压力每0.5MPa0.5716.214.771.63主汽温度每50.31540535.680.27再热汽温每51.46540535.721.25真空每1KPa2.1495.491.867.58给水温度每101.32255.8243.461.63补水率每10.331.51.1-0.13高压缸效率每10.51中压缸效率每11.34负荷率240MW以上每10MW2.032022/9/2425A厂300MW亚临界机组运行参数偏离2022/9/2526B

7、厂300MW亚临界机组运行参数偏离设计值引起的能耗差负荷率240MW以下每10MW1.36267.54.42端差每30.9132.28-0.22过冷度每20.1203.640.22排烟温度每101.00133.2138.340.51飞灰可燃物每10.705%1.26-2.62入炉煤热值每230kj/kg3.002276022744.190.21石子煤(T)4700.31累计15.052022/9/2426B厂300MW亚临界机组运行参数偏离2022/9/2527C厂330MW亚临界机组经济性分析2022/9/2427C厂330MW亚临界机组经济性分析2022/9/2528D厂超临界600MW机

8、组运行参数偏离设计值引起的能耗差 项目参数变化量影响煤耗(g/kwh)设计值8月实际值影响煤耗(g/kwh)主汽压力每0.5MPa0.12524.221.070.8主汽温度每50.55566563.670.3再热汽温每50.277566564.180.1真空每1KPa2.2196.191.979.1给水温度每100.83282267.641.2补水率每10.611.50.93-0.3高压缸效率每0.50.25中压缸效率每0.50.17低压缸效率每0.50.582022/9/2428D厂超临界600MW机组运行参数偏离2022/9/2529E厂超临界600MW机组运行参数偏离设计值引起的能耗差负

9、荷率400MW以下每10MW1.60负荷率400MW以上每10MW0.50504.84.8排烟温度每101.00123130.850.8飞灰可燃物每10.404%3.55-0.2入炉煤热值每230kj/kg3.002276022689.60.9石子煤(T)21584.1累计21.52022/9/2429E厂超临界600MW机组运行参数偏离2022/9/2530F厂超临界600MW机组影响机组热耗的主要因素分析2022/9/2430F厂超临界600MW机组影响机组热耗2022/9/2531影响锅炉效率的主要因素注:300MW机组2022/9/2431影响锅炉效率的主要因素注:300MW机2022

10、/9/2532提高经济性的途径2022/9/2432提高经济性的途径2022/9/2533汽轮机通流部分改造与调整通流部分改造全部(动、静、高、中、低)更换部分更换更换叶片通流部分局部调整通流部分间隙调整更换汽封改善高中压进、排汽平衡环汽封通流面积2022/9/2433汽轮机通流部分改造与调整通流部分改造通2022/9/2534治理阀门内漏系统优化阀门合并阀门取舍阀门管理2022/9/2434治理阀门内漏系统优化2022/9/2535通常容易发生泄漏阀门: 汽轮机本体疏水、高压主汽门前疏水、抽汽门前疏水、高压导管疏水、高低压旁路阀、高加事故疏水阀、给水旁路阀、给水泵和凝结水泵的再循环管等。造成

11、的结果:造成大量高品位蒸汽漏至凝汽器,机组功率减少,同时凝汽器热负荷加大,又影响真空;造成疏水集管与扩容器的温差增大,甚至造成疏水集管与扩容器连接处拉裂,使大量空气漏入凝汽器 ;工质非正常流动,如工质通过疏水管道倒流至汽轮机,造成汽缸进水或冷蒸汽,启、停过程汽缸温差增大,甚至造成打闸停机后机组转速不能至零。2022/9/2435通常容易发生泄漏阀门:2022/9/2536提高回热系统性能合理调整加热器水位合理选择疏水阀门的流通面积合理设计排气系统合理掌握投入、退出的温度变化率合理检修维护(进出水室短路,旁路泄漏)2022/9/2436提高回热系统性能合理调整加热器水位2022/9/2537提高

12、汽轮机冷端性能真空严密性凝汽器清洁度冷却水流量冷却水温度凝汽器水室排空气减少热负荷抽空气系统2022/9/2437提高汽轮机冷端性能真空严密性2022/9/2538改善抽气设备性能降低冷却水(工作流体)温度2022/9/2438改善抽气设备性能降低冷却水(工作流体)2022/9/2539射水抽气器工作水温度对凝汽器压力的影响工作水温度()21.0121.6922.0122.5123.3525.0229.98凝汽器压力(kPa)4.504.614.664.754.905.216.31注:试验条件:机组200MW负荷、工作水流量980m3/h、抽吸空气量75kg/h。2022/9/2439射水抽气

13、器工作水温度工作水温度()22022/9/25402022/9/24402022/9/2541真空泵工作特性线2022/9/2441真空泵工作特性线2022/9/2542真空泵降低冷却水温度的效果 在300 MW工况下,真空泵冷却水温度分别为18.5、22.25和30.5,真空泵出口循环液温度分别为35.34、38.875和45.11时,凝汽器压力分别为9.534kPa、9.94kPa和11.28kPa 。 在试验300 MW工况下,减去循环水温度变化对凝汽器压力的影响后,真空泵冷却水全部改用工业水(18.5),较原运行方式(循环水与工业水混合冷却)可以提高凝汽器真空0.288kPa,煤耗降低

14、约0.86 g/(kWh);较全部采用循环水可以提高真空约1.426kPa,煤耗降低约4.26 g/(kWh)。2022/9/2442真空泵降低冷却水温度的效果 在300 2022/9/2543国产引进型300MW汽轮机组节能降耗2022/9/2443国产引进型300MW汽轮机组节能降耗2022/9/2544 目前国产引进型300MW汽轮机组已投产100余台,据调查统计,机组的实际煤耗率与其设计值相比,平均约升高3035 g/(kWh)。与同类型机组相比,在负荷率相同的条件下,平均约高出2025 g/(kWh),其中可回收的约1015g/(kWh),表明该型机组在提高经济性等方面有相当大的空间

15、。2022/9/2444 目前国产引进型300MW2022/9/2545引进型300MW汽轮机组完善化概述 完善和改进汽轮机本体结构。通过改进汽轮机本体结构,重点解决正常运行中高压缸上、下缸温差大,汽缸变形、法兰螺栓松驰或断裂、结合面漏汽等问题; 完善和改进汽封结构、合理调整通流中心分径向间隙。根据计算和测量汽缸与转子的变形结果,提出合理的汽封结构和通流中心分径向间隙,改进检修工艺,减少本体内漏损失; 优化和改进疏水系统。取消冗余系统,优化联接方式,使用先进成熟的产品,消除外漏,减少内漏; 合理调整配套辅机和回热系统设备性能,根据不同的负荷工况,确定最佳运行方式和控制参数。 供电煤耗率下降10

16、g/(kW. h)或更多;2022/9/2445引进型300MW汽轮机组完善化概述 2022/9/2546存在问题1-高压缸效率低上汽、哈汽制造的该类型机组实际运行中反映最为普遍的另一个问题是高压缸排汽温度高出设计值1530,高压缸效率偏低310个百分点。高压缸占整机功率的份额为30%左右,缸效率每变化1个百分点,对机组热耗率的影响份额为0.2%,约为16.6kJ/(kWh),折合机组发电煤耗率0.62g/(kWh),对效率影响0.34%,功率约1.02MW。造成高压缸效率偏低和下降速度较快,主要原因是高压缸前部和中压缸中部上、下缸温差大,汽缸出现变形,通流汽封及轴封径向汽封易被磨损,螺栓松弛

17、或断裂,内缸结合面出现漏汽等。2022/9/2446存在问题1-高压缸效率低2022/9/2547部分机组试验结果高压缸效率汇总2022/9/2447部分机组试验结果高压缸效率汇总2022/9/2548存在问题2-热力系统及辅机设备国产引进型机组的试验热耗率比设计或经系统和参数修正后的热耗率大得多。一般试验与设计热耗率相差221.2616.2kJ/(kWh),修正量(试验与修正后热耗率相差)达233.2499.5kJ/(kWh),折合机组发电煤耗率8.718.7g/(kWh)。而进口同类型机组(宝钢、福州、大连)试验热耗率与设计或修正后的热耗率则十分接近,有的机组试验热耗率不经任何修正甚至比设

18、计热耗率还低。相比之下,说明国产引进型300MW机组热力系统及设备不尽完善。2022/9/2448存在问题2-热力系统及辅机设备国产引进2022/9/2549试验得到的机组各项技术经济指标,是在阀点和按设计系统严格隔离之后,基本无汽、水损失,无补水以及经各种修正后的结果,它反映了机组理论上的运行经济性水平。而实际运行结果则不可能达到机组试验的条件,且无任何修正,系统及设备的不完善性对实际运行的结果影响更大。由此可见,系统及设备的不完善是机组实际运行煤耗率普遍偏高的又一主要原因。 2022/9/2449试验得到的机组各项技术经济指标,是在阀2022/9/2550考核试验结果及修正情况汇总表 20

19、22/9/2450考核试验结果及修正情况汇总表 2022/9/2551不完善因素冷端系统及设备不完善,凝汽器真空度偏低,年平均一般在91%93%之间。300MW机组在额定负荷下,凝汽器压力每上升1kPa,机组发电煤耗率将上升2.5g/(kWh)左右,少发功率2MW左右。回热系统及设备不尽完善,造成高、低压加热器运行水位不正常,疏水管道振动,弯头吹薄、破裂,加热器上、下端差增大。有的机组加热器下端差竟达到20左右,给水温度达不到机组实际运行各段抽汽参数下应达到的数值。既影响加热器的安全,又导致机组经济性下降。2022/9/2451不完善因素冷端系统及设备不完善,凝汽器2022/9/2552不完善

20、因素本体及热力管道疏水系统设计庞大,汽机侧各类疏水管道有70根左右,阀门易发生内漏,且控制方式设计和管径设计不合理,甚至存在设计、安装错误。以控制方式为例,机组无论什么状态启、停,均采用一个控制模式,不仅易造成汽缸进水、进冷蒸汽,启、停过程中中压缸上下缸温差大,而且易造成阀芯吹损,导致正常运行时疏水阀关不严,大量高品位蒸汽漏至凝汽器,使凝汽器的热负荷加大,影响真空。据某些机组试验表明,由此可影响机组功率710MW。严重的还造成疏水集管与凝汽器背包式扩容器或疏水扩容器壳体连接处拉裂,使大量空气漏入凝汽器。2022/9/2452不完善因素本体及热力管道疏水系统设计庞2022/9/2553不完善因素

21、热力系统设计复杂,且工质有效能利用不尽合理,冗余系统多,易发生内漏,热备用系统和设备多采用连续疏水方式,使有效能损失较大,既影响安全和经济性,又增加检修、维护工作量及费用。汽水品质差,通流部分结垢严重,有的机组甚至高压缸通流部分亦结垢,影响汽轮机相对内效率。汽水品质差的原因是多方面的,如向凝汽器补水,由于雾化效果差或补水方式不当,会造成凝结水含氧量严重超标。2022/9/2453不完善因素热力系统设计复杂,且工质有效2022/9/2554不完善因素辅机选型、配套和运行方式不合理,运行单耗大,厂用电率增加。如循环水泵配置和运行方式不合理,造成循环水泵流量过小或过大,运行偏离设计工况,效率下降,用

22、电量增大。凝结水泵或凝升泵扬程高,凝结水调节门前、后差压达1.0MPa以上,凝结水泵电耗增加。2022/9/2454不完善因素辅机选型、配套和运行方式不合2022/9/2555不完善因素循环水泵配置和运行方式不合理,造成循环水泵流量过小或过大,运行偏离设计工况,效率下降,用电量增大。凝结水泵或凝升泵扬程高,凝结水调节门前、后差压达1.0MPa以上,凝结水泵电耗增加;实际运行轴封加热器热负荷大,压力高,温升高于设计值5左右。轴封系统压力高,给水泵小汽轮机轴封回汽不畅,油中带水严重。溢流至凝汽器流量大,既损失工质,又使凝汽器热负荷增大,影响凝汽器真空。 2022/9/2455不完善因素循环水泵配置

23、和运行方式不合理2022/9/2556机组运行方式及参数控制不合理 低负荷是机组目前运行煤耗率普遍较高的主要原因。引进型300MW机组,汽轮机进汽调节方式分为节流(单阀)或喷嘴调节(顺序阀)两种,机组低负荷运行时,采用何种运行方式,经济性差异较大,而且采用同一种调节方式,选用不同的运行参数,经济性亦存在一定差异,有一个最佳运行参数问题。另外,目前在对机组小指标考核时,如对汽温、汽压等参数的考核要求尽可能接近设计值,使机组在低负荷运行时,节流损失急剧增加,也是影响机组经济性的原因之一。2022/9/2456机组运行方式及参数控制不合理 低负荷是2022/9/2557汽轮机本体问题1-高压缸效率低

24、高压缸夹层漏汽量大;高压缸排汽温度测点位于高排出口竖直管段上,所测温度为混合后的温度。与高压缸排汽缸上温度差别。汽封径向间隙大;高中压缸汽封包括通流部分的动、静叶汽封及汽缸端部的轴封。由于汽缸变形,启、停过程中机组振动增大,发生动、静碰磨等原因,很容易造成汽封磨损,径向间隙增大。2022/9/2457汽轮机本体问题1-高压缸效率低高压缸2022/9/2558汽轮机本体问题2-调节级效率效率低调门节流损失大 阀门开度在40%以上,流量可达到阀门通流能力的95%以上;阀门开度低于40%,流量减小较快,节流损失迅速增大。2022/9/2458汽轮机本体问题2-调节级效率效率低调2022/9/2559

25、调节级动叶汽封径向间隙大调节级动叶叶顶及叶根共有三道汽封,径向间隙设计值为2.50.05mm,根据该处汽封直径,可求得漏汽面积为8721.8mm2,相当于内径为106mm的管道。不同电厂同类型机组大修揭缸检查结果,该汽封没有受到任何磨损,表明设计间隙值偏大。经计算和逐步试验,调节级动叶叶顶及叶根的三道汽封间隙可减少到0.8mm。不影响机组运行的安全性,可以较大地提高调节级效率。但调节级压差较大,该处汽封仍显得薄弱,可进一步通过结构方面的改进增加调节级汽封片数。 2022/9/2459调节级动叶汽封径向间隙大2022/9/2560汽封结构不合理主蒸汽设计压力为16.7MPa,调节级动叶后设计压力

26、为11.60MPa,扣除汽门节流损失,调节级整级压差达到3.43MPa。现设计的调节级汽封采用单齿、镶嵌式固定结构。单齿阻力系数小,密封效果差,固定式汽封若出现动静碰磨,汽封无法退让,易受到磨损,汽封间隙增大,漏汽量增加。2022/9/2460汽封结构不合理主蒸汽设计压力为16.72022/9/2561喷嘴组弧段之间间隙大 安装在6个汽室上的6个喷嘴组弧段之间设计预留膨胀间隙,设计值左、右水平中分面间隙为5mm,其他4道间隙分别为3mm。根据其结构和计算分析以及同类型机组改进后结果表明,该间隙预留值太大。调节级喷嘴出口蒸汽通过该间隙,未经过动叶作功,直接漏至第一压力级。部分机组实际大修检查发现

27、,该间隙达1015mm,使漏汽量增大,调节级漏汽损失增加。 2022/9/2461喷嘴组弧段之间间隙大 安装在6个汽室上2022/9/2562喷嘴叶片损伤由于调节级叶片处在主蒸汽进入汽轮机的第一级,工作条件恶劣,很容易受到蒸汽中携带的固体粒子的侵蚀,导致调节级喷嘴叶片损伤。当调节级叶片损伤达到一定程度,对调节级的通流效率影响较大。部分型号的机组由于叶型设计方面的原因,多次发生喷嘴损坏的现象,对机组经济性影响较大。妈湾电厂2号机2000年大修发现,调节级49个叶片出汽边普遍减薄,其中有28个叶片出汽边严重吹损。对调节级喷嘴组出汽侧冲刷磨损补焊处理,运行4个月后,根据机组热力性能试验数据的分析和判

28、断,调节级喷嘴组又发生了损坏情况,造成机组在相同参数工况下发电量减少7MW左右,给机组运行经济性带来很大影响。2022/9/2462喷嘴叶片损伤由于调节级叶片处在主蒸汽进2022/9/2563反流式结构损失机组的调节级为反流式结构,在汽流从调节级出口反转流向压力级进口的过程中,流动损失较大。2022/9/2463反流式结构损失机组的调节级为反流式结构2022/9/2564工况偏差大由于调节级的工作特点,调节级经常工作在变工况状态下,与设计状态偏差较大,导致流动效率降低。 2022/9/2464工况偏差大由于调节级的工作特点,调节级2022/9/2565汽缸结合面漏汽机组揭缸检查发现,高、中压缸

29、内缸及各静叶持环上、下半的水平结合面普遍存在漏汽冲刷痕迹。尤其是1段、3段、5段、6段抽汽口附近的持环水平结合面漏汽痕迹尤其明显。试验结果中也可以看出对应的抽汽温度比设计值高出较多,说明有高温的蒸汽漏入抽汽口。导致结合面漏汽有汽缸温差大引起汽缸变形,螺栓紧力不足,法兰结合面薄弱等原因。2022/9/2465汽缸结合面漏汽机组揭缸检查发现,高、中2022/9/2566汽缸内的漏汽 调节级后蒸汽通过高压缸进汽平衡盘汽封漏汽至高压缸夹层,其中一部分通过中压缸进汽平衡盘汽封漏汽至中压缸,一部分通过夹层流向高压缸排汽口;6根高压缸进汽导汽管及一段抽汽导汽管与内缸接口的密封圈。若密封不严造成主蒸汽或一段抽

30、汽漏至高压缸夹层;高压内缸及持环变形,法兰螺栓断裂或松弛等,造成水平结合面张口,蒸汽从通流部分漏至夹层;高压内缸调节级压力传压管断裂,内缸漏汽到高压缸夹层;由于中压缸冷却蒸汽管的割除,使中压缸进汽平衡盘第一道汽封发挥了密封作用,夹层漏至中压缸的流量减小。也造成夹层排向高排流量相对增大。2022/9/2466汽缸内的漏汽 调节级后蒸汽通过高压缸进2022/9/2567汽缸温差大上下缸负温差大是引进型300MW汽轮机的主要问题之一,也是导致汽缸结合面漏汽的主要原因之一。除此之外,还可引起汽缸变形,动静碰磨,汽封磨损,内缸断螺栓等一系列影响机组安全与经济性的问题。产生上、下缸温差大的原因是高压缸夹层

31、蒸汽流向与设计思想不符,另外由于调门进汽顺序设计,使低负荷时仅下半缸进汽,汽缸负温差加剧。汽缸上、下缸温差大,造成汽缸变形,法兰螺栓承受附加应力增大,螺栓易断裂或松弛。经计算上、下缸温差每增加1,通流径向间隙将减小0.01mm,径向汽封易受到磨损,导致通流效率下降。 2022/9/2467汽缸温差大上下缸负温差大是引进型3002022/9/2568疏水系统存在的问题 2022/9/2468疏水系统存在的问题 2022/9/2569疏水位置功率增量吸热量增量热耗率增量折合煤耗率MWMWkJ/(kWh)g/(kWh)主蒸汽-435.9-143.29.50.36再热蒸汽-332.20.08.60.3

32、2高压缸排汽-332.2-143.26.90.261段抽汽-364.7-143.27.70.292段抽汽-332.2-143.26.90.263段抽汽-274.50.07.10.274段抽汽-218.90.05.70.215段抽汽-164.40.04.20.166段抽汽-114.90.03.00.117段抽汽-87.10.02.20.098段抽汽-41.40.01.10.04疏水每泄漏1t/h对机组经济性的影响(F156) 2022/9/2469疏水位置功率增量吸热量增量热耗率增量折2022/9/2570造成疏水系统问题的原因 疏水差压大,易造成阀芯吹损;由于阀门的质量、安装、检修、调整等问题

33、,造成阀门容易泄漏、开关不灵等;运行操作方式,机组无论什么状态启、停,均采用一个控制模式,而且易造成阀芯吹损,导致正常运行时疏水阀关不严。疏水系统的合理设计。本体及热力管道疏水系统设计庞大,汽机侧各类疏水管道有70根左右,漏点多。管径设计不合理。疏水系统由于是辅助的热力系统,功能简单,在设计、安装检修过程中常容易忽视,存在问题较多。甚至存在设计、安装错误。2022/9/2470造成疏水系统问题的原因 疏水差压大,易2022/9/2571疏水系统优化原则在各种工况下,疏水系统应能防止汽轮机进水和机本体的不正常积水,并满足系统暖管和热备用要求;为防止疏水阀门泄漏,造成阀芯吹损,各疏水管道应加装一手

34、动截止阀,原则上手动阀安装在气动或电动阀门前。为不降低机组运行操作的自动化程度,正常工况下手动截止阀应处于全开状态。当气动或电动疏水阀出现内漏,而无处理条件时,可作为临时措施,关闭手动截止阀;对于运行中处于热备用的管道或设备,在用汽设备的入口门前应暖管,暖管采用组合型自动疏水器方式,而不采用节流疏水孔板连续疏水方式。疏水器选用DFS倒置浮杯式自动疏水器;任何类型的疏水管上不得设置疏水逆止门。 2022/9/2471疏水系统优化原则在各种工况下,疏水系统2022/9/2572加热器存在问题回热系统及设备不尽完善,造成高、低压加热器运行水位不正常;加热器上、下端差增大,温升不足;危急疏水泄漏,正常

35、疏水不畅,不能逐级自流;给水旁路泄漏;疏水管道振动,弯头吹薄、破裂等问题。2022/9/2472加热器存在问题回热系统及设备不尽完善,2022/9/2573轴封与门杆漏汽系统 轴封供汽系统漏汽量大 轴封疏水系统漏量大 轴封压力高 轴封溢流量大 轴封加热器温升大 门杆一档漏汽不畅 小汽轮机轴封回汽不畅 2022/9/2473轴封与门杆漏汽系统 轴封供汽系统漏汽量2022/9/2574锅炉及燃烧系统经济性控制参数2022/9/2474锅炉及燃烧系统经济性控制参数2022/9/2575降低飞灰可燃物 表示从尾部烟道排出的飞灰中含有的未燃尽碳的量占飞灰量的百分比,主要与燃煤特性、煤粉细度、煤粉均匀性、

36、炉膛温度、风粉混合程度等有关。针对所燃用的煤种,合理选定煤粉细度,尽可能减少煤粉中大颗粒的含量,强化燃烧,提高燃尽程度。2022/9/2475降低飞灰可燃物 表示从尾部烟2022/9/2576最佳氧量 炉膛出口的氧量是表征锅炉的配风、燃烧状况的重要因素,加强锅炉燃烧配风的调整,改善锅炉的燃烧状况,提高锅炉运行效率。因炉膛出口处烟气温度较高,锅炉运行中监测的氧量测点一般在高温过热器后。计算排烟损失的氧量应是空气预热器烟气出口处的氧量,尾部烟道特别是空气预热器的漏风,将引起的烟气量和排烟损失的增加,需要定期监测空气预热器的漏风,并加强对空气预热器的维护。 通过燃烧调整,确定合理的最佳过量空气系数2

37、022/9/2476最佳氧量 炉膛出口的氧量是表2022/9/2577科学的排烟温度 是锅炉运行中可控的一个综合性指标,它主要决定于锅炉燃烧状况以及各段受热面的换热状况,保持各段受热面的清洁和换热效果,是防止排烟温度异常、保证锅炉经济运行的根本措施。排烟温度升高5,影响锅炉效率降低0.2(百分点)左右,影响煤耗升高0.6g/KW.h。2022/9/2477科学的排烟温度 是锅炉运行中可2022/9/2578降 低 厂 用 电2022/9/2478降 低 厂 用 电2022/9/2579消耗厂用电的主要设备风机磨煤机锅炉给水泵循环水泵凝结水泵除尘设备脱硫设备2022/9/2479消耗厂用电的主要

38、设备风机2022/9/2580泵存在的普遍问题 扬程偏高 选型欠合理2022/9/2480泵存在的普遍问题 扬程偏高2022/9/2581循环水泵优化运行进行最佳凝汽器背压试验 ,其内容包括机组微增出力试验和循环水泵运行优化配置试验,通过不同负荷下改变凝汽器背压,测量机组的微增功率及循环水泵功耗,寻求最佳凝汽器背压;通过调整循环水泵运行方式或者运行台数,测量循环水泵流量和功耗,获得循环水泵的运行优化配置,降低电耗。2022/9/2481循环水泵优化运行进行最佳凝汽器背压试验2022/9/2582循环水泵改造循环水泵改造的方案主要有:双速电机驱动车削叶轮外径;更换叶轮;泵整体更换。 根据循泵配置

39、的实际情况,改造时效率、流量何扬程兼顾。循环水系统采用单元制运行时,各单元之间一般应采用联通管连接,这样既可以完全单元制运行,又可以机组间相互协调。2022/9/2482循环水泵改造循环水泵改造的方案主要有2022/9/2583凝结水泵改造变频调节;车削叶轮外径;更换叶轮;泵整体更换。2022/9/2483凝结水泵改造变频调节;2022/9/2584汽动给水泵组优化运行 确定汽动给水泵组最佳运行方式主要包括两个方面,一是通过不同负荷定、滑压运行方式下的泵组效率和耗汽量的测量,确定汽动泵组的最佳运行参数和运行方式;二是根据单台汽动泵余量较大的特点,在低负荷时进行电动泵和汽动泵不同备用方式试验,以

40、获得较高的运行经济性。2022/9/2484汽动给水泵组优化运行 确2022/9/2585电站风机节能电站风机耗电量仅次于水泵约占发电容量的1.5-2.5%,对于300MW机组,风机运行效率提高一个百分点,每台机组年节电约40万kWh。造成的风机运行效率较低的主要原因: 风机本身为低效风机; 设计选型不当造成高效风机不在高效区运行; 进口管道设计不当破坏了风机进口要求的条件; 出口管道设计不当造成涡流损失; 风机调节效率低,又经常在低负荷运行。 通常,通过改造风机(叶轮)或对进、出口管道进行改造,或利用调速技术,提高风机的运行效率。2022/9/2485电站风机节能电站风机耗电量仅次于水泵约2022/9/2586制粉系统节能制粉系统是锅炉机组密不可分的主要辅助系统,特别是在目前发电用煤供应紧张、煤质多变的情况下,其运行性能对锅炉机组的安全、经济运行有重要影响。钢球磨煤机制粉系统运行的经济性差,应加强对钢球磨煤机钢球装载量及钢球配比优化、系统通风量等进行运行优化调整,寻求适应燃用煤种的最佳钢球装载量、通风量,提高磨煤机

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论